-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'v0.0.6' into 242-quantile-renaming # Conflicts: # R/dist_quantiles.R # R/epipredict-package.R # R/layer_residual_quantiles.R # man/arx_fcast_epi_workflow.Rd # man/arx_forecaster.Rd # man/extrapolate_quantiles.Rd # man/nested_quantiles.Rd # man/smooth_quantile_reg.Rd
- Loading branch information
Showing
35 changed files
with
1,312 additions
and
126 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -32,6 +32,7 @@ Imports: | |
generics, | ||
glue, | ||
hardhat (>= 1.3.0), | ||
lifecycle, | ||
magrittr, | ||
methods, | ||
quantreg, | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,228 @@ | ||
#' Predict the future with the most recent value | ||
#' | ||
#' This is a simple forecasting model for | ||
#' [epiprocess::epi_df] data. It uses the most recent observation as the | ||
#' forecast for any future date, and produces intervals by shuffling the quantiles | ||
#' of the residuals of such a "flatline" forecast and incrementing these | ||
#' forward over all available training data. | ||
#' | ||
#' By default, the predictive intervals are computed separately for each | ||
#' combination of `geo_value` in the `epi_data` argument. | ||
#' | ||
#' This forecaster is meant to produce exactly the CDC Baseline used for | ||
#' [COVID19ForecastHub](https://covid19forecasthub.org) | ||
#' | ||
#' @param epi_data An [epiprocess::epi_df] | ||
#' @param outcome A scalar character for the column name we wish to predict. | ||
#' @param args_list A list of additional arguments as created by the | ||
#' [cdc_baseline_args_list()] constructor function. | ||
#' | ||
#' @return A data frame of point and interval forecasts at for all | ||
#' aheads (unique horizons) for each unique combination of `key_vars`. | ||
#' @export | ||
#' | ||
#' @examples | ||
#' library(dplyr) | ||
#' weekly_deaths <- case_death_rate_subset %>% | ||
#' select(geo_value, time_value, death_rate) %>% | ||
#' left_join(state_census %>% select(pop, abbr), by = c("geo_value" = "abbr")) %>% | ||
#' mutate(deaths = pmax(death_rate / 1e5 * pop, 0)) %>% | ||
#' select(-pop, -death_rate) %>% | ||
#' group_by(geo_value) %>% | ||
#' epi_slide(~ sum(.$deaths), before = 6, new_col_name = "deaths") %>% | ||
#' ungroup() %>% | ||
#' filter(weekdays(time_value) == "Saturday") | ||
#' | ||
#' cdc <- cdc_baseline_forecaster(weekly_deaths, "deaths") | ||
#' preds <- pivot_quantiles_wider(cdc$predictions, .pred_distn) | ||
#' | ||
#' if (require(ggplot2)) { | ||
#' forecast_date <- unique(preds$forecast_date) | ||
#' four_states <- c("ca", "pa", "wa", "ny") | ||
#' preds %>% | ||
#' filter(geo_value %in% four_states) %>% | ||
#' ggplot(aes(target_date)) + | ||
#' geom_ribbon(aes(ymin = `0.1`, ymax = `0.9`), fill = blues9[3]) + | ||
#' geom_ribbon(aes(ymin = `0.25`, ymax = `0.75`), fill = blues9[6]) + | ||
#' geom_line(aes(y = .pred), color = "orange") + | ||
#' geom_line( | ||
#' data = weekly_deaths %>% filter(geo_value %in% four_states), | ||
#' aes(x = time_value, y = deaths) | ||
#' ) + | ||
#' scale_x_date(limits = c(forecast_date - 90, forecast_date + 30)) + | ||
#' labs(x = "Date", y = "Weekly deaths") + | ||
#' facet_wrap(~geo_value, scales = "free_y") + | ||
#' theme_bw() + | ||
#' geom_vline(xintercept = forecast_date) | ||
#' } | ||
cdc_baseline_forecaster <- function( | ||
epi_data, | ||
outcome, | ||
args_list = cdc_baseline_args_list()) { | ||
validate_forecaster_inputs(epi_data, outcome, "time_value") | ||
if (!inherits(args_list, c("cdc_flat_fcast", "alist"))) { | ||
cli_stop("args_list was not created using `cdc_baseline_args_list().") | ||
} | ||
keys <- epi_keys(epi_data) | ||
ek <- kill_time_value(keys) | ||
outcome <- rlang::sym(outcome) | ||
|
||
|
||
r <- epi_recipe(epi_data) %>% | ||
step_epi_ahead(!!outcome, ahead = args_list$data_frequency, skip = TRUE) %>% | ||
recipes::update_role(!!outcome, new_role = "predictor") %>% | ||
recipes::add_role(tidyselect::all_of(keys), new_role = "predictor") %>% | ||
step_training_window(n_recent = args_list$n_training) | ||
|
||
forecast_date <- args_list$forecast_date %||% max(epi_data$time_value) | ||
# target_date <- args_list$target_date %||% forecast_date + args_list$ahead | ||
|
||
|
||
latest <- get_test_data( | ||
epi_recipe(epi_data), epi_data, TRUE, args_list$nafill_buffer, | ||
forecast_date | ||
) | ||
|
||
f <- frosting() %>% | ||
layer_predict() %>% | ||
layer_cdc_flatline_quantiles( | ||
aheads = args_list$aheads, | ||
quantile_levels = args_list$quantile_levels, | ||
nsims = args_list$nsims, | ||
by_key = args_list$quantile_by_key, | ||
symmetrize = args_list$symmetrize, | ||
nonneg = args_list$nonneg | ||
) %>% | ||
layer_add_forecast_date(forecast_date = forecast_date) %>% | ||
layer_unnest(.pred_distn_all) | ||
# layer_add_target_date(target_date = target_date) | ||
if (args_list$nonneg) f <- layer_threshold(f, ".pred") | ||
|
||
eng <- parsnip::linear_reg() %>% parsnip::set_engine("flatline") | ||
|
||
wf <- epi_workflow(r, eng, f) | ||
wf <- generics::fit(wf, epi_data) | ||
preds <- suppressWarnings(predict(wf, new_data = latest)) %>% | ||
tibble::as_tibble() %>% | ||
dplyr::select(-time_value) %>% | ||
dplyr::mutate(target_date = forecast_date + ahead * args_list$data_frequency) | ||
|
||
structure( | ||
list( | ||
predictions = preds, | ||
epi_workflow = wf, | ||
metadata = list( | ||
training = attr(epi_data, "metadata"), | ||
forecast_created = Sys.time() | ||
) | ||
), | ||
class = c("cdc_baseline_fcast", "canned_epipred") | ||
) | ||
} | ||
|
||
|
||
|
||
#' CDC baseline forecaster argument constructor | ||
#' | ||
#' Constructs a list of arguments for [cdc_baseline_forecaster()]. | ||
#' | ||
#' @inheritParams arx_args_list | ||
#' @param data_frequency Integer or string. This describes the frequency of the | ||
#' input `epi_df`. For typical FluSight forecasts, this would be `"1 week"`. | ||
#' Allowable arguments are integers (taken to mean numbers of days) or a | ||
#' string like `"7 days"` or `"2 weeks"`. Currently, all other periods | ||
#' (other than days or weeks) result in an error. | ||
#' @param aheads Integer vector. Unlike [arx_forecaster()], this doesn't have | ||
#' any effect on the predicted values. | ||
#' Predictions are always the most recent observation. This determines the | ||
#' set of prediction horizons for [layer_cdc_flatline_quantiles()]`. It interacts | ||
#' with the `data_frequency` argument. So, for example, if the data is daily | ||
#' and you want forecasts for 1:4 days ahead, then you would use `1:4`. However, | ||
#' if you want one-week predictions, you would set this as `c(7, 14, 21, 28)`. | ||
#' But if `data_frequency` is `"1 week"`, then you would set it as `1:4`. | ||
#' @param quantile_levels Vector or `NULL`. A vector of probabilities to produce | ||
#' prediction intervals. These are created by computing the quantiles of | ||
#' training residuals. A `NULL` value will result in point forecasts only. | ||
#' @param nsims Positive integer. The number of draws from the empirical CDF. | ||
#' These samples are spaced evenly on the (0, 1) scale, F_X(x) resulting | ||
#' in linear interpolation on the X scale. This is achieved with | ||
#' [stats::quantile()] Type 7 (the default for that function). | ||
#' @param nonneg Logical. Force all predictive intervals be non-negative. | ||
#' Because non-negativity is forced _before_ propagating forward, this | ||
#' has slightly different behaviour than would occur if using | ||
#' [layer_threshold()]. | ||
#' | ||
#' @return A list containing updated parameter choices with class `cdc_flat_fcast`. | ||
#' @export | ||
#' | ||
#' @examples | ||
#' cdc_baseline_args_list() | ||
#' cdc_baseline_args_list(symmetrize = FALSE) | ||
#' cdc_baseline_args_list(quantile_levels = c(.1, .3, .7, .9), n_training = 120) | ||
cdc_baseline_args_list <- function( | ||
data_frequency = "1 week", | ||
aheads = 1:4, | ||
n_training = Inf, | ||
forecast_date = NULL, | ||
quantile_levels = c(.01, .025, 1:19 / 20, .975, .99), | ||
nsims = 1e3L, | ||
symmetrize = TRUE, | ||
nonneg = TRUE, | ||
quantile_by_key = "geo_value", | ||
nafill_buffer = Inf) { | ||
arg_is_scalar(n_training, nsims, data_frequency) | ||
data_frequency <- parse_period(data_frequency) | ||
arg_is_pos_int(data_frequency) | ||
arg_is_chr(quantile_by_key, allow_empty = TRUE) | ||
arg_is_scalar(forecast_date, allow_null = TRUE) | ||
arg_is_date(forecast_date, allow_null = TRUE) | ||
arg_is_nonneg_int(aheads, nsims) | ||
arg_is_lgl(symmetrize, nonneg) | ||
arg_is_probabilities(quantile_levels, allow_null = TRUE) | ||
arg_is_pos(n_training) | ||
if (is.finite(n_training)) arg_is_pos_int(n_training) | ||
if (is.finite(nafill_buffer)) arg_is_pos_int(nafill_buffer, allow_null = TRUE) | ||
|
||
structure( | ||
enlist( | ||
data_frequency, | ||
aheads, | ||
n_training, | ||
forecast_date, | ||
quantile_levels, | ||
nsims, | ||
symmetrize, | ||
nonneg, | ||
quantile_by_key, | ||
nafill_buffer | ||
), | ||
class = c("cdc_baseline_fcast", "alist") | ||
) | ||
} | ||
|
||
#' @export | ||
print.cdc_baseline_fcast <- function(x, ...) { | ||
name <- "CDC Baseline" | ||
NextMethod(name = name, ...) | ||
} | ||
|
||
parse_period <- function(x) { | ||
arg_is_scalar(x) | ||
if (is.character(x)) { | ||
x <- unlist(strsplit(x, " ")) | ||
if (length(x) == 1L) x <- as.numeric(x) | ||
if (length(x) == 2L) { | ||
mult <- substr(x[2], 1, 3) | ||
mult <- switch( | ||
mult, | ||
day = 1L, | ||
wee = 7L, | ||
cli::cli_abort("incompatible timespan in `aheads`.") | ||
) | ||
x <- as.numeric(x[1]) * mult | ||
} | ||
if (length(x) > 2L) cli::cli_abort("incompatible timespan in `aheads`.") | ||
} | ||
stopifnot(rlang::is_integerish(x)) | ||
as.integer(x) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.