Skip to content

Commit

Permalink
remove fabletools/feasts imports
Browse files Browse the repository at this point in the history
  • Loading branch information
brookslogan committed Jun 13, 2024
1 parent 7fd2119 commit 7c0fff0
Show file tree
Hide file tree
Showing 3 changed files with 26 additions and 28 deletions.
3 changes: 0 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -30,9 +30,6 @@ Imports:
cli,
data.table,
dplyr (>= 1.0.0),
fabletools,
feasts,
generics,
genlasso,
ggplot2,
lifecycle (>= 1.0.1),
Expand Down
48 changes: 24 additions & 24 deletions R/outliers.R
Original file line number Diff line number Diff line change
Expand Up @@ -222,6 +222,7 @@ detect_outlr_rm <- function(x = seq_along(y), y, n = 21,
#' @param seasonal_period Integer specifying period of seasonality. For example,
#' for daily data, a period 7 means weekly seasonality. The default is `NULL`,
#' meaning that no seasonal term will be included in the STL decomposition.
#' If specified, it must be strictly larger than 1.
#' @template outlier-detection-options
#' @template detect-outlr-return
#'
Expand Down Expand Up @@ -258,6 +259,9 @@ detect_outlr_stl <- function(x = seq_along(y), y,
detection_multiplier = 2,
min_radius = 0,
replacement_multiplier = 0) {
if (dplyr::n_distinct(x) != length(y)) {
Abort("`x` contains duplicate values. (If being run on a column in an `epi_df`, did you group by relevant key variables?)")
}
# Transform if requested
if (log_transform) {
# Replace all negative values with 0
Expand All @@ -266,32 +270,26 @@ detect_outlr_stl <- function(x = seq_along(y), y,
y <- log(y + offset)
}

# Make a tsibble for fabletools, setup and run STL
z_tsibble <- tsibble::tsibble(x = x, y = y, index = x)

stl_formula <- y ~ trend(window = n_trend) +
season(period = seasonal_period, window = n_seasonal)
if (is.null(seasonal_period)) {
freq <- 7L
} else {
if (seasonal_period == 1L) Abort("`seasonal_period` must be `NULL` or > 1.")
freq <- seasonal_period
}

stl_components <- z_tsibble %>%
fabletools::model(feasts::STL(stl_formula, robust = TRUE)) %>%
generics::components() %>%
yts <- stats::ts(y, frequency = freq)
stl_comp <- stats::stl(yts,
t.window = n_trend, s.window = n_seasonal,
robust = TRUE
)$time.series %>%
tibble::as_tibble() %>%
dplyr::select(.data$trend:.data$remainder) %>% #
dplyr::rename_with(~"seasonal", tidyselect::starts_with("season")) %>%
dplyr::rename(resid = .data$remainder)

# Allocate the seasonal term from STL to either fitted or resid
if (!is.null(seasonal_period)) {
stl_components <- stl_components %>%
dplyr::mutate(
fitted = .data$trend + .data$seasonal
)
stl_comp <- dplyr::mutate(stl_comp, fitted = .data$trend + .data$seasonal)
} else {
stl_components <- stl_components %>%
dplyr::mutate(
fitted = .data$trend,
resid = .data$seasonal + resid
)
stl_comp <- dplyr::mutate(stl_comp, fitted = .data$trend, resid = .data$seasonal + .data$resid)
}

# Detect negatives if requested
Expand All @@ -306,10 +304,7 @@ detect_outlr_stl <- function(x = seq_along(y), y,

# Calculate lower and upper thresholds and replacement value
z <- z %>%
dplyr::mutate(
fitted = stl_components$fitted,
resid = stl_components$resid
) %>%
dplyr::mutate(fitted = stl_comp$fitted, resid = stl_comp$resid) %>%
roll_iqr(
n = n_threshold,
detection_multiplier = detection_multiplier,
Expand Down Expand Up @@ -337,7 +332,12 @@ roll_iqr <- function(z, n, detection_multiplier, min_radius,
as_type <- as.numeric
}

epi_slide(z, roll_iqr = stats::IQR(resid), before = floor((n - 1) / 2), after = ceiling((n - 1) / 2)) %>%
z %>%
epi_slide(
roll_iqr = stats::IQR(resid),
before = floor((n - 1) / 2),
after = ceiling((n - 1) / 2)
) %>%
dplyr::mutate(
lower = pmax(
min_lower,
Expand Down
3 changes: 2 additions & 1 deletion man/detect_outlr_stl.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit 7c0fff0

Please sign in to comment.