Skip to content

constantin-huetterer/model_constructor

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

75 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

model_constructor

Constructor to create pytorch model.

News

2020-07-29 added YaResNet and MXResNet constructor.
2020-05-10 added Twist module.

Install

pip install model-constructor

Or instll from repo:

pip install git+https://github.com/ayasyrev/model_constructor.git

How to use

First import constructor class, then create model constructor oject.

Now you can change every part of model.

from model_constructor.net import *
model = Net()
model
Net constructor
  c_in: 3, c_out: 1000
  expansion: 1, groups: 1, dw: False
  sa: False, se: False
  stem sizes: [3, 32, 32, 64], stide on 0
  body sizes [64, 128, 256, 512]
  layers: [2, 2, 2, 2]

Now we have model consructor, default setting as xresnet18. And we can get model after call it.

model.c_in
3
model.c_out
1000
model.stem_sizes
[3, 32, 32, 64]
model.layers
[2, 2, 2, 2]
model.expansion
1
#collapse_output
model()
Output details ...
Sequential(
  model Net
  (stem): Sequential(
    (conv_0): ConvLayer(
      (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): ReLU(inplace=True)
    )
    (conv_1): ConvLayer(
      (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): ReLU(inplace=True)
    )
    (conv_2): ConvLayer(
      (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): ReLU(inplace=True)
    )
    (stem_pool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  )
  (body): Sequential(
    (l_0): Sequential(
      (bl_0): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): ReLU(inplace=True)
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): ReLU(inplace=True)
      )
      (bl_1): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): ReLU(inplace=True)
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): ReLU(inplace=True)
      )
    )
    (l_1): Sequential(
      (bl_0): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): ReLU(inplace=True)
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
        (idconv): ConvLayer(
          (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (act_fn): ReLU(inplace=True)
      )
      (bl_1): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): ReLU(inplace=True)
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): ReLU(inplace=True)
      )
    )
    (l_2): Sequential(
      (bl_0): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): ReLU(inplace=True)
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
        (idconv): ConvLayer(
          (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (act_fn): ReLU(inplace=True)
      )
      (bl_1): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): ReLU(inplace=True)
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): ReLU(inplace=True)
      )
    )
    (l_3): Sequential(
      (bl_0): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): ReLU(inplace=True)
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
        (idconv): ConvLayer(
          (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (act_fn): ReLU(inplace=True)
      )
      (bl_1): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): ReLU(inplace=True)
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): ReLU(inplace=True)
      )
    )
  )
  (head): Sequential(
    (pool): AdaptiveAvgPool2d(output_size=1)
    (flat): Flatten()
    (fc): Linear(in_features=512, out_features=1000, bias=True)
  )
)

If you want to change model, just change constructor parameters.
Lets create xresnet50.

model.expansion = 4
model.layers = [3,4,6,3]

Now we can look at model body and if we call constructor - we have pytorch model!

#collapse_output
model.body
Output details ...
Sequential(
  (l_0): Sequential(
    (bl_0): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (idconv): ConvLayer(
        (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_1): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_2): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
  )
  (l_1): Sequential(
    (bl_0): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
      (idconv): ConvLayer(
        (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_1): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_2): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_3): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
  )
  (l_2): Sequential(
    (bl_0): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
      (idconv): ConvLayer(
        (conv): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_1): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_2): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_3): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_4): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_5): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
  )
  (l_3): Sequential(
    (bl_0): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
      (idconv): ConvLayer(
        (conv): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_1): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
    (bl_2): ResBlock(
      (convs): Sequential(
        (conv_0): ConvLayer(
          (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_1): ConvLayer(
          (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv_2): ConvLayer(
          (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (act_fn): ReLU(inplace=True)
    )
  )
)

More modification.

Main purpose of this module - fast and easy modify model. And here is the link to more modification to beat Imagenette leaderboard with add MaxBlurPool and modification to ResBlock https://github.com/ayasyrev/imagenette_experiments/blob/master/ResnetTrick_create_model_fit.ipynb

But now lets create model as mxresnet50 from fastai forums tread https://forums.fast.ai/t/how-we-beat-the-5-epoch-imagewoof-leaderboard-score-some-new-techniques-to-consider

Lets create mxresnet constructor.

model = Net(name='MxResNet')

Then lets modify stem.

model.stem_sizes = [3,32,64,64]

Now lets change activation function to Mish. Here is link to forum disscussion https://forums.fast.ai/t/meet-mish-new-activation-function-possible-successor-to-relu
Mish is in model_constructor.activations

from model_constructor.activations import Mish
model.act_fn = Mish()
model
MxResNet constructor
  c_in: 3, c_out: 1000
  expansion: 1, groups: 1, dw: False
  sa: False, se: False
  stem sizes: [3, 32, 64, 64], stide on 0
  body sizes [64, 128, 256, 512]
  layers: [2, 2, 2, 2]
#collapse_output
model()
Output details ...
Sequential(
  model MxResNet
  (stem): Sequential(
    (conv_0): ConvLayer(
      (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): Mish()
    )
    (conv_1): ConvLayer(
      (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): Mish()
    )
    (conv_2): ConvLayer(
      (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): Mish()
    )
    (stem_pool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  )
  (body): Sequential(
    (l_0): Sequential(
      (bl_0): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): Mish()
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): Mish()
      )
      (bl_1): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): Mish()
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): Mish()
      )
    )
    (l_1): Sequential(
      (bl_0): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): Mish()
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
        (idconv): ConvLayer(
          (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (act_fn): Mish()
      )
      (bl_1): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): Mish()
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): Mish()
      )
    )
    (l_2): Sequential(
      (bl_0): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): Mish()
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
        (idconv): ConvLayer(
          (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (act_fn): Mish()
      )
      (bl_1): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): Mish()
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): Mish()
      )
    )
    (l_3): Sequential(
      (bl_0): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): Mish()
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
        (idconv): ConvLayer(
          (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (act_fn): Mish()
      )
      (bl_1): ResBlock(
        (convs): Sequential(
          (conv_0): ConvLayer(
            (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (act_fn): Mish()
          )
          (conv_1): ConvLayer(
            (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (act_fn): Mish()
      )
    )
  )
  (head): Sequential(
    (pool): AdaptiveAvgPool2d(output_size=1)
    (flat): Flatten()
    (fc): Linear(in_features=512, out_features=1000, bias=True)
  )
)

MXResNet

Now lets make MxResNet50

model.expansion = 4
model.layers = [3,4,6,3]
model.name = 'mxresnet50'

Now we have mxresnet50 constructor.
We can inspect every parts of it.
And after call it we got model.

model
mxresnet50 constructor
  c_in: 3, c_out: 1000
  expansion: 4, groups: 1, dw: False
  sa: False, se: False
  stem sizes: [3, 32, 64, 64], stide on 0
  body sizes [64, 128, 256, 512]
  layers: [3, 4, 6, 3]
#collapse_output
model.stem.conv_1
Output details ...
ConvLayer(
  (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (act_fn): Mish()
)
#collapse_output
model.body.l_0.bl_0
Output details ...
ResBlock(
  (convs): Sequential(
    (conv_0): ConvLayer(
      (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): Mish()
    )
    (conv_1): ConvLayer(
      (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): Mish()
    )
    (conv_2): ConvLayer(
      (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (idconv): ConvLayer(
    (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (act_fn): Mish()
)

YaResNet

Now lets change Resblock to YaResBlock (Yet another ResNet, former NewResBlock) is in lib from version 0.1.0

from model_constructor.yaresnet import YaResBlock
model.block = YaResBlock

That all. Now we have YaResNet constructor

#collapse_output
model.name = 'YaResNet'
model
Output details ...
YaResNet constructor
  c_in: 3, c_out: 1000
  expansion: 4, groups: 1, dw: False
  sa: False, se: False
  stem sizes: [3, 32, 64, 64], stide on 0
  body sizes [64, 128, 256, 512]
  layers: [3, 4, 6, 3]

Let see what we have.

#collapse_output
model.body.l_1.bl_0
Output details ...
YaResBlock(
  (reduce): AvgPool2d(kernel_size=2, stride=2, padding=0)
  (convs): Sequential(
    (conv_0): ConvLayer(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): Mish()
    )
    (conv_1): ConvLayer(
      (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): Mish()
    )
    (conv_2): ConvLayer(
      (conv): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (idconv): ConvLayer(
    (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (merge): Mish()
)

Packages

No packages published

Languages

  • Jupyter Notebook 94.2%
  • Python 5.7%
  • Makefile 0.1%