Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(wgpu): add to_dtype kernel #906

Merged
merged 4 commits into from
Jan 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions dfdx-core/src/tensor/webgpu/device.rs
Original file line number Diff line number Diff line change
Expand Up @@ -247,6 +247,36 @@ impl Webgpu {
pub(crate) fn get_shader_module(&self, name: TypeId) -> Option<Arc<ShaderModule>> {
self.cs_cache.read().get(&name).cloned()
}
/// Submit a command buffer to the GPU.
///
/// Note: Does not block until completion. If you need this, use
/// `self.dev.poll(Maintain::WaitForSubmissionIndex(idx))` using the
/// returned [`wgpu::SubmissionIndex`]
pub(crate) fn submit_commands<F>(
&self,
label: Option<&str>,
command_builder: F,
) -> wgpu::SubmissionIndex
where
F: FnOnce(&mut wgpu::CommandEncoder),
{
let mut encoder = self
.dev
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: label.clone(),
});

if let Some(label) = label {
encoder.push_debug_group(label);
}
command_builder(&mut encoder);
if labe.is_some() {
encoder.pop_debug_group();
}

let cmd = [encoder.finish()];
self.queue.submit(cmd)
}

// #[allow(unused)]
// pub(crate) unsafe fn get_workspace<E>(&self, len: usize) -> Result<MutexGuard<Buffer>, Error> {
Expand Down
2 changes: 2 additions & 0 deletions dfdx-core/src/tensor/webgpu/mod.rs
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
mod allocate;
mod device;
mod types;

pub use device::Buffer;
pub use device::Webgpu;
pub use types::*;

#[cfg(test)]
mod tests {
Expand Down
56 changes: 56 additions & 0 deletions dfdx-core/src/tensor/webgpu/types.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
use crate::shapes::Unit;

/// A primitive data type natively supported by WebGPU.
///
/// See: https://www.w3.org/TR/WGSL/#types
///
/// todo: support packed types
pub trait WebgpuNativeType: Unit {
/// Name of the data type in WGSL.
const NAME: &'static str;
}

macro_rules! webgpu_type {
($RustTy:ty) => {
impl WebgpuNativeType for $RustTy {
const NAME: &'static str = stringify!($RustTy);
}
};
($RustTy:ty, $WgpuTy:expr) => {
impl WebgpuNativeType for $RustTy {
const NAME: &'static str = $WgpuTy;
}
};
}

/*
see:
- https://docs.rs/wgpu/latest/wgpu/struct.Features.html#associatedconstant.SHADER_F16
- https://docs.rs/wgpu/latest/wgpu/struct.Features.html#associatedconstant.SHADER_F64
- https://docs.rs/wgpu/latest/wgpu/struct.Features.html#associatedconstant.SHADER_I16
*/
#[cfg(feature = "f16")]
webgpu_type!(half::f16, "f16");
webgpu_type!(f32);
// todo: only enable when f64 feature is enabled
#[cfg(feature = "f64")]
webgpu_type!(f64);

#[cfg(feature = "i16")]
webgpu_type!(i16);
webgpu_type!(i32);

webgpu_type!(u32);
webgpu_type!(bool);

pub(crate) trait HasGlslType {
const TYPE: &'static str;
}

impl HasGlslType for f32 {
const TYPE: &'static str = "float";
}

impl HasGlslType for f64 {
const TYPE: &'static str = "double";
}
16 changes: 16 additions & 0 deletions dfdx-core/src/tensor_ops/to_dtype/to_dtype.wgsl
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
alias T = __SRC__;
alias U = __DST__;

@group(0) @binding(0)
var<storage, read> in: array<T>;

@group(0) @binding(1)
var<storage, read_write> out: array<U>;

@compute @workgroup_size(1, 1, 1)
fn main(
@builtin(global_invocation_id) global_id: vec3<u32>
) {
let i = global_id.x;
out[i] = U(in[i]);
}
99 changes: 96 additions & 3 deletions dfdx-core/src/tensor_ops/to_dtype/webgpu_kernel.rs
Original file line number Diff line number Diff line change
@@ -1,9 +1,102 @@
use crate::prelude::{Unit, Webgpu};
use crate::{
prelude::Storage,
tensor::webgpu::{Webgpu, WebgpuNativeType},
tensor_ops::utilities::webgpu_kernels::webgpu_params,
};
use num_traits::AsPrimitive;
use wgpu;

impl<E1: Unit, E2: Unit> super::ToDtypeKernel<E1, E2> for Webgpu {
/// kernel template
const KERNEL: &'static str = include_str!("./to_dtype.wgsl");

const LAYOUT_DESC: wgpu::BindGroupLayoutDescriptor = wgpu::BindGroupLayoutDescriptor {
label: Some("to-dtype"),
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: true },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: false },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
],
};

impl<E1: WebgpuNativeType + AsPrimitive<E2>, E2: WebgpuNativeType> super::ToDtypeKernel<E1, E2>
for Webgpu
{
fn forward<S: crate::prelude::Shape>(
inp: crate::prelude::Tensor<S, E1, Self>,
) -> Result<crate::prelude::Tensor<S, E2, Self>, crate::prelude::Error> {
todo!()
let module_name = std::format!("convert_{}_to_{}", E1::NAME, E2::NAME);
let label = Some(module_name.as_str());
let device = inp.device;

let layout = device.dev.create_bind_group_layout(&LAYOUT_DESC);
let shader_source: String = KERNEL
.replace("__SRC__", E1::NAME)
.replace("__DST__", E2::NAME);

// TODO: support WGSL shaders in device shader cache
let source = wgpu::ShaderSource::Wgsl(shader_source.into());
let shader_module = device
.dev
.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some(shader_name),
source,
});
let pipeline_layout = device
.dev
.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: label.clone(),
bind_group_layouts: layouts,
// todo: these are useful and we should use them if the adapter supports them
push_constant_ranges: &push_constant_ranges,
});

let pipeline = device
.dev
.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
label: label.clone(),
layout: Some(&pipeline_layout),
module: &shader_module,
entry_point: fn_name,
});

let numel = inp.shape.num_elements();
let shape = inp.shape;
let strides = shape.strides();
let output = unsafe { device.alloc_empty::<E2>(numel) }?;

let params: wgpu::BindGroup = webgpu_params!(device, pipeline; inp.data, output);

let _idx = device.submit_commands(label.clone(), |encoder| {
let (x, y, z) = *work_groups;
let mut pass = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor {
label: label.clone(),
..Default::default()
});
// TODO: should this be called before the pass, as the pass is created, or before submission?
pass.set_pipeline(&pipeline);
pass.set_bind_group(0, &params, &[]);
pass.dispatch_workgroups(numel as u32, 1, 1);
});

// note: no need to sync here, buffer can remain on the gpu until to_array or to_vec gets called,
// and those functions sync the device before mapping the buffer
Ok(device.build_tensor(shape, strides, output))
}
}
45 changes: 28 additions & 17 deletions dfdx-core/src/tensor_ops/utilities/webgpu_kernels.rs
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,33 @@ use crate::{
use core::any::TypeId;
use std::{borrow::Cow, marker::PhantomData, sync::Arc, vec::Vec};

use wgpu::{
BindingType, BufferBindingType, ComputePipelineDescriptor, Device, PipelineLayout, ShaderStages,
};

/// Creates a [`BindGroup`] for a pipeline from a set of [`wgpu::BindingResource`]s.
macro_rules! webgpu_params {
($self:expr, $pipeline:expr; $($x:expr),+ $(,)? ) => {
{
let bindings = [$($x.as_entire_binding()),+];
let entries: Vec<_> = bindings
.into_iter()
.enumerate()
.map(|(i, binding)| wgpu::BindGroupEntry {
binding: i as u32,
resource: binding,
})
.collect();
$self.dev.create_bind_group(&::wgpu::BindGroupDescriptor {
label: None,
layout: &($pipeline).get_bind_group_layout(0),
entries: &entries
})
}
}
}
pub(crate) use webgpu_params;

pub(crate) trait UnaryOpWebgpuKernel<E> {
const DF_USES_FX: bool;
const HAS_CONST_DF: bool;
Expand Down Expand Up @@ -49,6 +76,7 @@ macro_rules! webgpu_unary {
}
};
}
pub(crate) use webgpu_unary;

/// Zero-sized marker type for forward pass TypeId
#[derive(Debug, Default)]
Expand All @@ -62,23 +90,6 @@ pub(crate) struct Backward<E: Dtype, K> {
_phantom: PhantomData<(E, K)>,
}

pub(crate) trait HasGlslType {
const TYPE: &'static str;
}

impl HasGlslType for f32 {
const TYPE: &'static str = "float";
}

impl HasGlslType for f64 {
const TYPE: &'static str = "double";
}

pub(crate) use webgpu_unary;
use wgpu::{
BindingType, BufferBindingType, ComputePipelineDescriptor, Device, PipelineLayout, ShaderStages,
};

impl<E: Dtype + HasGlslType, K: UnaryOpWebgpuKernel<E> + 'static> UnaryKernel<K, E> for Webgpu {
const BACKWARD_WITHOUT_INP: bool = K::DF_USES_FX;
const BACKWARD_WITHOUT_DATA: bool = K::HAS_CONST_DF;
Expand Down
Loading