Project currently abandoned, similar toolkit for computing on GPU in LSTMLM repo.
LSTM Neural Network in Python and Cython, used for language modelling
Based on LSTM RNN, model proposed by Jürgen Schmidhuber http://www.idsia.ch/~juergen/ Inspired by RNN LM toolkit by Tomas Mikolov http://www.fit.vutbr.cz/~imikolov/rnnlm/
Implemented by Daniel Soutner, Department of Cybernetics, University of West Bohemia, Plzen, Czech rep. [email protected], 2013
Licensed under the 3-clause BSD.
INSTALLATION:
You will need:
- python >= 2.6
- cython >= 0.19 (Win users see: http://www.lfd.uci.edu/~gohlke/pythonlibs/#cython)
- c++ compiler (Win users: Visual Studio or MinGW: http://stackoverflow.com/questions/6034390/compiling-with-cython-and-mingw-produces-gcc-error-unrecognized-command-line-o http://wiki.cython.org/InstallingOnWindows gcc compile with -Ofast or -O3)
Python libs:
- numpy
- argparse (is in python 2.7 and higher)
- gensim (for LDA extension)
Files:
- LSTM.py
- ArpaLM.py
- setup.py
- lstm.py
- fast.pyx
- lda.py
- fastonebigheader.h
run python setup.py build_ext --inplace --force
USAGE:
train LSTM LM on text and save
python lstm.py --train train.txt dev.txt test.txt --hidden 100 --save-net example.lstm-lm
sentences are processed independently (net is reset after every sentence), vocabulary limited to example.vocab (word-per-line)
python lstm.py --train train.txt dev.txt test.txt --hidden 100 --save-net example.lstm-lm --independent --vocabulary example.vocab
load net and evaluate on perplexity
python lstm.py --load-net example.lstm-lm --ppl valid2.txt
load net, combine with ARPA LM and evaluate
python lstm.py --load-net example.lstm-lm --ppl valid2.txt --srilm-file ngram.model.arpa --lambda 0.2
load net and rescore nbest list
python lstm.py --load-net example.lstm-lm --nbest-rescore nbest.list --wip 0 --lmw 11