-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Deploying to gh-pages from @ f89ce2e 🚀
- Loading branch information
Showing
52 changed files
with
116 additions
and
98 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,6 @@ | ||
# This file is machine-generated - editing it directly is not advised | ||
|
||
julia_version = "1.7.3" | ||
manifest_format = "2.0" | ||
|
||
[deps] |
Empty file.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
<!doctype html> <html lang=en > <meta charset=UTF-8 > <meta name=viewport content="width=device-width, initial-scale=1"> <link rel=stylesheet href="/website/css/franklin.css"> <link rel=stylesheet href="/website/css/poole_hyde.css"> <link rel=stylesheet href="/website/css/custom.css"> <style> html {font-size: 17px;} .franklin-content {position: relative; padding-left: 8%; padding-right: 5%; line-height: 1.35em;} @media (min-width: 940px) { .franklin-content {width: 100%; margin-left: auto; margin-right: auto;} } @media (max-width: 768px) { .franklin-content {padding-left: 6%; padding-right: 6%;} } </style> <link rel=icon href="/website/assets/favicon.png"> <title>Dataflowr - Deep Learning DIY</title> <div class=sidebar > <div class="container sidebar-sticky"> <div class=sidebar-about > <img src="/website/assets/dataflowr_violet_plain_square.png" style="width: 120px; height: auto; display: inline"> <img src="/website/assets/favicon.png" style="margin-left:1em; position:relative;left:0px; top:-30px; width: 60px; height: auto; display: inline"> <h1 style="font-size:1em; opacity: 0.95;"><a href="/website/">Deep Learning DIY</a></h1> </div> <nav class=sidebar-nav > <a class="sidebar-nav-item " href="/website/modules/0-sotfware-installation"> <b>Module 0</b> - <em> Software installation</em> </a> <a class="sidebar-nav-item " href="/website/modules/1-intro-general-overview"> <b>Module 1</b> - <em>Introduction & General Overview</em> </a> <a class="sidebar-nav-item " href="/website/modules/2a-pytorch-tensors"> <b>Module 2a</b> - <em>PyTorch tensors</em> </a> <a class="sidebar-nav-item " href="/website/modules/2b-automatic-differentiation"> <b>Module 2b</b> - <em>Automatic differentiation</em> </a> <a class="sidebar-nav-item " href="/website/modules/2c-jax"> <b>Module 2c</b> - <em>Automatic differentiation: VJP and intro to JAX</em> </a> <a class="sidebar-nav-item " href="/website/modules/3-loss-functions-for-classification"> <b>Module 3</b> - <em>Loss functions for classification</em> </a> <a class="sidebar-nav-item " href="/website/modules/4-optimization-for-deep-learning"> <b>Module 4</b> - <em>Optimization for DL</em> </a> <a class="sidebar-nav-item " href="/website/modules/5-stacking-layers"> <b>Module 5</b> - <em>Stacking layers</em> </a> <a class="sidebar-nav-item " href="/website/modules/6-convolutional-neural-network"> <b>Module 6</b> - <em>Convolutional neural network</em> </a> <a class="sidebar-nav-item " href="/website/modules/7-dataloading"> <b>Module 7</b> - <em>Dataloading</em> </a> <a class="sidebar-nav-item " href="/website/modules/8a-embedding-layers"> <b>Module 8a</b> - <em>Embedding layers</em> </a> <a class="sidebar-nav-item " href="/website/modules/8b-collaborative-filtering"> <b>Module 8b</b> - <em>Collaborative filtering</em> </a> <a class="sidebar-nav-item " href="/website/modules/8c-word2vec"> <b>Module 8c</b> - <em>Word2vec</em> </a> <a class="sidebar-nav-item " href="/website/modules/9a-autoencoders"> <b>Module 9a</b> - <em>Autoencoders</em> </a> <a class="sidebar-nav-item " href="/website/modules/9b-unet"> <b>Module 9b</b> - <em>UNets</em> </a> <a class="sidebar-nav-item " href="/website/modules/9c-flows"> <b>Module 9c</b> - <em>Flows</em> </a> <a class="sidebar-nav-item " href="/website/modules/10-generative-adversarial-networks"> <b>Module 10</b> - <em>Generative adversarial networks</em> </a> <a class="sidebar-nav-item " href="/website/modules/11a-recurrent-neural-networks-theory"> <b>Module 11a</b> - <em>Recurrent Neural Networks (theory)</em> </a> <a class="sidebar-nav-item " href="/website/modules/11b-recurrent-neural-networks-practice"> <b>Module 11b</b> - <em>RNN in practice</em> </a> <a class="sidebar-nav-item " href="/website/modules/11c-batches-with-sequences"> <b>Module 11c</b> - <em>Batches with sequences in Pytorch</em> </a> <a class="sidebar-nav-item " href="/website/modules/12-attention"> <b>Module 12</b> - <em>Attention and Transformers</em> </a> <a class="sidebar-nav-item " href="/website/modules/13-siamese"> <b>Module 13</b> - <em>Siamese Networks and Representation Learning</em> </a> <a class="sidebar-nav-item " href="/website/modules/14a-depth"> <b>Module 14a</b> - <em>The Benefits of Depth</em> </a> <a class="sidebar-nav-item " href="/website/modules/14b-depth"> <b>Module 14b</b> - <em>The Problems with Depth</em> </a> <a class="sidebar-nav-item " href="/website/modules/15-dropout"> <b>Module 15</b> - <em>Dropout</em> </a> <a class="sidebar-nav-item " href="/website/modules/16-batchnorm"> <b>Module 16</b> - <em>Batchnorm</em> </a> <a class="sidebar-nav-item " href="/website/modules/17-resnets"> <b>Module 17</b> - <em>Resnets</em> </a> <a class="sidebar-nav-item " href="/website/modules/18a-diffusion"> <b>Module 18a</b> - <em>Denoising Diffusion Probabilistic Models</em> </a> <!-- <div class=week >Unit 7</div>--> <div class=week >Homeworks</div> <a class="sidebar-nav-item " href="/website/homework/1-mlp-from-scratch"> <b>Homework 1</b> - <em>MLP from scratch</em> </a> <a class="sidebar-nav-item " href="/website/homework/2-CAM-adversarial"> <b>Homework 2</b> - <em>Class Activation Map and adversarial examples</em> </a> <a class="sidebar-nav-item active" href="/website/homework/3-VAE"> <b>Homework 3</b> - <em>VAE for MNIST clustering and generation</em> </a> <div class=week >Bonus</div> <a class="sidebar-nav-item " href="/website/modules/12-intro-julia"> <b>Module</b> - <em>Intro to Julia: Autodiff with dual numbers</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph0"> <b>Module</b> - <em>Deep learning on graphs</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph1"> <b>Graph</b> - <em>Node embeddings</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph2"> <b>Graph</b> - <em>Signal processing on graphs</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph3"> <b>Graph</b> - <em> Graph embeddings and GNNs</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/GCN_inductivebias_spectral"> <b>Post</b> - <em>Spectral GCN</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/Convolutions_first"> <b>Post</b> - <em>Convolutions from first principles</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/invariant_equivariant"> <b>Post</b> - <em>Invariant and equivariant networks</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/graph_invariant"> <b>Graph</b> - <em>Exploiting Graph Invariants in Deep Learning</em> </a> <div class=week >Guest Lectures</div> <a class="sidebar-nav-item " href="/website/modules/privacy-preserving-ML"> <b>Privacy Preserving ML</b> - <em>Daniel Huynh</em> </a> </nav> </div> </div> <div class="content container"> <div class=franklin-content ><h1 id=homework_3_vae_for_mnist_clustering_and_generation ><a href="#homework_3_vae_for_mnist_clustering_and_generation" class=header-anchor >Homework 3: VAE for MNIST clustering and generation</a></h1> <img src="/website/assets/mnist_disentangled.gif" style="width: 620px; height: auto; display: inline"> <p><a href="https://github.com/Schlumberger/joint-vae">Image source</a></p> <p>Homework 3 is in the form of a jupyter notebook. You must complete it and submit it on moodle (for students enrolled on this course).</p> <p><a href="https://github.com/dataflowr/notebooks/blob/master/HW3/VAE_clustering_empty.ipynb">The Jupyter notebook</a></p> <div class=page-foot > <div class=copyright > <a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> Last modified: June 20, 2023. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. </div> </div> </div> </div> | ||
<!doctype html> <html lang=en > <meta charset=UTF-8 > <meta name=viewport content="width=device-width, initial-scale=1"> <link rel=stylesheet href="/website/css/franklin.css"> <link rel=stylesheet href="/website/css/poole_hyde.css"> <link rel=stylesheet href="/website/css/custom.css"> <style> html {font-size: 17px;} .franklin-content {position: relative; padding-left: 8%; padding-right: 5%; line-height: 1.35em;} @media (min-width: 940px) { .franklin-content {width: 100%; margin-left: auto; margin-right: auto;} } @media (max-width: 768px) { .franklin-content {padding-left: 6%; padding-right: 6%;} } </style> <link rel=icon href="/website/assets/favicon.png"> <title>Dataflowr - Deep Learning DIY</title> <div class=sidebar > <div class="container sidebar-sticky"> <div class=sidebar-about > <img src="/website/assets/dataflowr_violet_plain_square.png" style="width: 120px; height: auto; display: inline"> <img src="/website/assets/favicon.png" style="margin-left:1em; position:relative;left:0px; top:-30px; width: 60px; height: auto; display: inline"> <h1 style="font-size:1em; opacity: 0.95;"><a href="/website/">Deep Learning DIY</a></h1> </div> <nav class=sidebar-nav > <a class="sidebar-nav-item " href="/website/modules/0-sotfware-installation"> <b>Module 0</b> - <em> Software installation</em> </a> <a class="sidebar-nav-item " href="/website/modules/1-intro-general-overview"> <b>Module 1</b> - <em>Introduction & General Overview</em> </a> <a class="sidebar-nav-item " href="/website/modules/2a-pytorch-tensors"> <b>Module 2a</b> - <em>PyTorch tensors</em> </a> <a class="sidebar-nav-item " href="/website/modules/2b-automatic-differentiation"> <b>Module 2b</b> - <em>Automatic differentiation</em> </a> <a class="sidebar-nav-item " href="/website/modules/2c-jax"> <b>Module 2c</b> - <em>Automatic differentiation: VJP and intro to JAX</em> </a> <a class="sidebar-nav-item " href="/website/modules/3-loss-functions-for-classification"> <b>Module 3</b> - <em>Loss functions for classification</em> </a> <a class="sidebar-nav-item " href="/website/modules/4-optimization-for-deep-learning"> <b>Module 4</b> - <em>Optimization for DL</em> </a> <a class="sidebar-nav-item " href="/website/modules/5-stacking-layers"> <b>Module 5</b> - <em>Stacking layers</em> </a> <a class="sidebar-nav-item " href="/website/modules/6-convolutional-neural-network"> <b>Module 6</b> - <em>Convolutional neural network</em> </a> <a class="sidebar-nav-item " href="/website/modules/7-dataloading"> <b>Module 7</b> - <em>Dataloading</em> </a> <a class="sidebar-nav-item " href="/website/modules/8a-embedding-layers"> <b>Module 8a</b> - <em>Embedding layers</em> </a> <a class="sidebar-nav-item " href="/website/modules/8b-collaborative-filtering"> <b>Module 8b</b> - <em>Collaborative filtering</em> </a> <a class="sidebar-nav-item " href="/website/modules/8c-word2vec"> <b>Module 8c</b> - <em>Word2vec</em> </a> <a class="sidebar-nav-item " href="/website/modules/9a-autoencoders"> <b>Module 9a</b> - <em>Autoencoders</em> </a> <a class="sidebar-nav-item " href="/website/modules/9b-unet"> <b>Module 9b</b> - <em>UNets</em> </a> <a class="sidebar-nav-item " href="/website/modules/9c-flows"> <b>Module 9c</b> - <em>Flows</em> </a> <a class="sidebar-nav-item " href="/website/modules/10-generative-adversarial-networks"> <b>Module 10</b> - <em>Generative adversarial networks</em> </a> <a class="sidebar-nav-item " href="/website/modules/11a-recurrent-neural-networks-theory"> <b>Module 11a</b> - <em>Recurrent Neural Networks (theory)</em> </a> <a class="sidebar-nav-item " href="/website/modules/11b-recurrent-neural-networks-practice"> <b>Module 11b</b> - <em>RNN in practice</em> </a> <a class="sidebar-nav-item " href="/website/modules/11c-batches-with-sequences"> <b>Module 11c</b> - <em>Batches with sequences in Pytorch</em> </a> <a class="sidebar-nav-item " href="/website/modules/12-attention"> <b>Module 12</b> - <em>Attention and Transformers</em> </a> <a class="sidebar-nav-item " href="/website/modules/13-siamese"> <b>Module 13</b> - <em>Siamese Networks and Representation Learning</em> </a> <a class="sidebar-nav-item " href="/website/modules/14a-depth"> <b>Module 14a</b> - <em>The Benefits of Depth</em> </a> <a class="sidebar-nav-item " href="/website/modules/14b-depth"> <b>Module 14b</b> - <em>The Problems with Depth</em> </a> <a class="sidebar-nav-item " href="/website/modules/15-dropout"> <b>Module 15</b> - <em>Dropout</em> </a> <a class="sidebar-nav-item " href="/website/modules/16-batchnorm"> <b>Module 16</b> - <em>Batchnorm</em> </a> <a class="sidebar-nav-item " href="/website/modules/17-resnets"> <b>Module 17</b> - <em>Resnets</em> </a> <a class="sidebar-nav-item " href="/website/modules/18a-diffusion"> <b>Module 18a</b> - <em>Denoising Diffusion Probabilistic Models</em> </a> <!-- <div class=week >Unit 7</div>--> <div class=week >Homeworks</div> <a class="sidebar-nav-item " href="/website/homework/1-mlp-from-scratch"> <b>Homework 1</b> - <em>MLP from scratch</em> </a> <a class="sidebar-nav-item " href="/website/homework/2-CAM-adversarial"> <b>Homework 2</b> - <em>Class Activation Map and adversarial examples</em> </a> <a class="sidebar-nav-item active" href="/website/homework/3-VAE"> <b>Homework 3</b> - <em>VAE for MNIST clustering and generation</em> </a> <div class=week >Bonus</div> <a class="sidebar-nav-item " href="/website/modules/12-intro-julia"> <b>Module</b> - <em>Intro to Julia: Autodiff with dual numbers</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph0"> <b>Module</b> - <em>Deep learning on graphs</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph1"> <b>Graph</b> - <em>Node embeddings</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph2"> <b>Graph</b> - <em>Signal processing on graphs</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph3"> <b>Graph</b> - <em> Graph embeddings and GNNs</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/GCN_inductivebias_spectral"> <b>Post</b> - <em>Spectral GCN</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/Convolutions_first"> <b>Post</b> - <em>Convolutions from first principles</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/invariant_equivariant"> <b>Post</b> - <em>Invariant and equivariant networks</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/graph_invariant"> <b>Graph</b> - <em>Exploiting Graph Invariants in Deep Learning</em> </a> <div class=week >Guest Lectures</div> <a class="sidebar-nav-item " href="/website/modules/privacy-preserving-ML"> <b>Privacy Preserving ML</b> - <em>Daniel Huynh</em> </a> </nav> </div> </div> <div class="content container"> <div class=franklin-content ><h1 id=homework_3_vae_for_mnist_clustering_and_generation ><a href="#homework_3_vae_for_mnist_clustering_and_generation" class=header-anchor >Homework 3: VAE for MNIST clustering and generation</a></h1> <img src="/website/assets/mnist_disentangled.gif" style="width: 620px; height: auto; display: inline"> <p><a href="https://github.com/Schlumberger/joint-vae">Image source</a></p> <p>Homework 3 is in the form of a jupyter notebook. You must complete it and submit it on moodle (for students enrolled on this course).</p> <p><a href="https://github.com/dataflowr/notebooks/blob/master/HW3/VAE_clustering_empty.ipynb">The Jupyter notebook</a></p> <div class=page-foot > <div class=copyright > <a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> Last modified: September 15, 2023. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. </div> </div> </div> </div> |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -35,7 +35,7 @@ <h2 id=start_documenting ><a href="#start_documenting" class=header-anchor >Star | |
<div class=page-foot > | ||
<div class=copyright > | ||
<a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> | ||
Last modified: June 20, 2023. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. | ||
Last modified: September 15, 2023. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. | ||
</div> | ||
</div> | ||
</div> | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -37,7 +37,7 @@ <h3 id=tldr ><a href="#tldr" class=header-anchor >tl;dr</a></h3> | |
<div class=page-foot > | ||
<div class=copyright > | ||
<a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> | ||
Last modified: June 20, 2023. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. | ||
Last modified: September 15, 2023. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. | ||
</div> | ||
</div> | ||
</div> | ||
|
Oops, something went wrong.