-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
- Loading branch information
There are no files selected for viewing
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -35,7 +35,7 @@ <h2 id=start_documenting ><a href="#start_documenting" class=header-anchor >Star | |
<div class=page-foot > | ||
<div class=copyright > | ||
<a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> | ||
Last modified: February 23, 2024. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. | ||
Last modified: July 11, 2024. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. | ||
</div> | ||
</div> | ||
</div> | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -37,7 +37,7 @@ <h3 id=tldr ><a href="#tldr" class=header-anchor >tl;dr</a></h3> | |
<div class=page-foot > | ||
<div class=copyright > | ||
<a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> | ||
Last modified: February 23, 2024. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. | ||
Last modified: July 11, 2024. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. | ||
</div> | ||
</div> | ||
</div> | ||
|
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -10,4 +10,4 @@ | |
C = <span class=hljs-number >8</span> | ||
<span class=hljs-built_in >input</span> = torch.randn(<span class=hljs-number >3</span>,C,<span class=hljs-number >4</span>,<span class=hljs-number >5</span>) | ||
target = torch.empty(<span class=hljs-number >3</span>,<span class=hljs-number >4</span>,<span class=hljs-number >5</span>, dtype=torch.long).random_(<span class=hljs-number >0</span>,C) | ||
<span class=hljs-keyword >assert</span> loss1(m(<span class=hljs-built_in >input</span>),target) == loss2(<span class=hljs-built_in >input</span>,target)</code></pre> <h2 id=quiz ><a href="#quiz" class=header-anchor >Quiz</a></h2> <p>To check you know your loss, you can do the <a href="https://dataflowr.github.io/quiz/module3.html">quizzes</a></p> <div class=page-foot > <div class=copyright > <a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> Last modified: February 23, 2024. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. </div> </div> </div> </div> | ||
<span class=hljs-keyword >assert</span> loss1(m(<span class=hljs-built_in >input</span>),target) == loss2(<span class=hljs-built_in >input</span>,target)</code></pre> <h2 id=quiz ><a href="#quiz" class=header-anchor >Quiz</a></h2> <p>To check you know your loss, you can do the <a href="https://dataflowr.github.io/quiz/module3.html">quizzes</a></p> <div class=page-foot > <div class=copyright > <a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> Last modified: July 11, 2024. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. </div> </div> </div> </div> |
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
<!doctype html> <html lang=en > <meta charset=UTF-8 > <meta name=viewport content="width=device-width, initial-scale=1"> <link rel=stylesheet href="/website/css/franklin.css"> <link rel=stylesheet href="/website/css/poole_hyde.css"> <link rel=stylesheet href="/website/css/custom.css"> <style> html {font-size: 17px;} .franklin-content {position: relative; padding-left: 8%; padding-right: 5%; line-height: 1.35em;} @media (min-width: 940px) { .franklin-content {width: 100%; margin-left: auto; margin-right: auto;} } @media (max-width: 768px) { .franklin-content {padding-left: 6%; padding-right: 6%;} } </style> <link rel=icon href="/website/assets/favicon.png"> <title>Dataflowr - Deep Learning DIY</title> <div class=sidebar > <div class="container sidebar-sticky"> <div class=sidebar-about > <img src="/website/assets/dataflowr_violet_plain_square.png" style="width: 120px; height: auto; display: inline"> <img src="/website/assets/favicon.png" style="margin-left:1em; position:relative;left:0px; top:-30px; width: 60px; height: auto; display: inline"> <h1 style="font-size:1em; opacity: 0.95;"><a href="/website/">Deep Learning DIY</a></h1> </div> <nav class=sidebar-nav > <a class="sidebar-nav-item " href="/website/modules/0-sotfware-installation"> <b>Module 0</b> - <em> Software installation</em> </a> <a class="sidebar-nav-item " href="/website/modules/1-intro-general-overview"> <b>Module 1</b> - <em>Introduction & General Overview</em> </a> <a class="sidebar-nav-item " href="/website/modules/2a-pytorch-tensors"> <b>Module 2a</b> - <em>PyTorch tensors</em> </a> <a class="sidebar-nav-item " href="/website/modules/2b-automatic-differentiation"> <b>Module 2b</b> - <em>Automatic differentiation</em> </a> <a class="sidebar-nav-item " href="/website/modules/2c-jax"> <b>Module 2c</b> - <em>Automatic differentiation: VJP and intro to JAX</em> </a> <a class="sidebar-nav-item " href="/website/modules/3-loss-functions-for-classification"> <b>Module 3</b> - <em>Loss functions for classification</em> </a> <a class="sidebar-nav-item " href="/website/modules/4-optimization-for-deep-learning"> <b>Module 4</b> - <em>Optimization for DL</em> </a> <a class="sidebar-nav-item " href="/website/modules/5-stacking-layers"> <b>Module 5</b> - <em>Stacking layers</em> </a> <a class="sidebar-nav-item " href="/website/modules/6-convolutional-neural-network"> <b>Module 6</b> - <em>Convolutional neural network</em> </a> <a class="sidebar-nav-item " href="/website/modules/7-dataloading"> <b>Module 7</b> - <em>Dataloading</em> </a> <a class="sidebar-nav-item " href="/website/modules/8a-embedding-layers"> <b>Module 8a</b> - <em>Embedding layers</em> </a> <a class="sidebar-nav-item " href="/website/modules/8b-collaborative-filtering"> <b>Module 8b</b> - <em>Collaborative filtering</em> </a> <a class="sidebar-nav-item " href="/website/modules/8c-word2vec"> <b>Module 8c</b> - <em>Word2vec</em> </a> <a class="sidebar-nav-item " href="/website/modules/9a-autoencoders"> <b>Module 9a</b> - <em>Autoencoders</em> </a> <a class="sidebar-nav-item active" href="/website/modules/9b-unet"> <b>Module 9b</b> - <em>UNets</em> </a> <a class="sidebar-nav-item " href="/website/modules/9c-flows"> <b>Module 9c</b> - <em>Flows</em> </a> <a class="sidebar-nav-item " href="/website/modules/10-generative-adversarial-networks"> <b>Module 10</b> - <em>Generative adversarial networks</em> </a> <a class="sidebar-nav-item " href="/website/modules/11a-recurrent-neural-networks-theory"> <b>Module 11a</b> - <em>Recurrent Neural Networks (theory)</em> </a> <a class="sidebar-nav-item " href="/website/modules/11b-recurrent-neural-networks-practice"> <b>Module 11b</b> - <em>RNN in practice</em> </a> <a class="sidebar-nav-item " href="/website/modules/11c-batches-with-sequences"> <b>Module 11c</b> - <em>Batches with sequences in Pytorch</em> </a> <a class="sidebar-nav-item " href="/website/modules/12-attention"> <b>Module 12</b> - <em>Attention and Transformers</em> </a> <a class="sidebar-nav-item " href="/website/modules/13-siamese"> <b>Module 13</b> - <em>Siamese Networks and Representation Learning</em> </a> <a class="sidebar-nav-item " href="/website/modules/14a-depth"> <b>Module 14a</b> - <em>The Benefits of Depth</em> </a> <a class="sidebar-nav-item " href="/website/modules/14b-depth"> <b>Module 14b</b> - <em>The Problems with Depth</em> </a> <a class="sidebar-nav-item " href="/website/modules/15-dropout"> <b>Module 15</b> - <em>Dropout</em> </a> <a class="sidebar-nav-item " href="/website/modules/16-batchnorm"> <b>Module 16</b> - <em>Batchnorm</em> </a> <a class="sidebar-nav-item " href="/website/modules/17-resnets"> <b>Module 17</b> - <em>Resnets</em> </a> <a class="sidebar-nav-item " href="/website/modules/18a-diffusion"> <b>Module 18a</b> - <em>Denoising Diffusion Probabilistic Models</em> </a> <a class="sidebar-nav-item " href="/website/modules/19-clip"> <b>Module 19</b> - <em>Zero-shot classification with CLIP</em> </a> <!-- <div class=week >Unit 7</div>--> <div class=week >Homeworks</div> <a class="sidebar-nav-item " href="/website/homework/1-mlp-from-scratch"> <b>Homework 1</b> - <em>MLP from scratch</em> </a> <a class="sidebar-nav-item " href="/website/homework/2-CAM-adversarial"> <b>Homework 2</b> - <em>Class Activation Map and adversarial examples</em> </a> <a class="sidebar-nav-item " href="/website/homework/3-VAE"> <b>Homework 3</b> - <em>VAE for MNIST clustering and generation</em> </a> <div class=week >Bonus</div> <a class="sidebar-nav-item " href="/website/modules/12-intro-julia"> <b>Module</b> - <em>Intro to Julia: Autodiff with dual numbers</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph0"> <b>Module</b> - <em>Deep learning on graphs</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph1"> <b>Graph</b> - <em>Node embeddings</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph2"> <b>Graph</b> - <em>Signal processing on graphs</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph3"> <b>Graph</b> - <em> Graph embeddings and GNNs</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/GCN_inductivebias_spectral"> <b>Post</b> - <em>Spectral GCN</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/Convolutions_first"> <b>Post</b> - <em>Convolutions from first principles</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/invariant_equivariant"> <b>Post</b> - <em>Invariant and equivariant networks</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/graph_invariant"> <b>Graph</b> - <em>Exploiting Graph Invariants in Deep Learning</em> </a> <div class=week >Guest Lectures</div> <a class="sidebar-nav-item " href="/website/modules/privacy-preserving-ML"> <b>Privacy Preserving ML</b> - <em>Daniel Huynh</em> </a> </nav> </div> </div> <div class="content container"> <div class=franklin-content ><h1 id=module_9b_-_unets ><a href="#module_9b_-_unets" class=header-anchor >Module 9b - UNets</a></h1> <p><img src="../extras/unet/unet.png" alt="" /></p> <ul> <li><p><a href="https://github.com/dataflowr/notebooks/blob/master/Module9/UNet_image_seg.ipynb">UNet for image segmentation</a></p> </ul> <div class=page-foot > <div class=copyright > <a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> Last modified: February 23, 2024. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. </div> </div> </div> </div> | ||
<!doctype html> <html lang=en > <meta charset=UTF-8 > <meta name=viewport content="width=device-width, initial-scale=1"> <link rel=stylesheet href="/website/css/franklin.css"> <link rel=stylesheet href="/website/css/poole_hyde.css"> <link rel=stylesheet href="/website/css/custom.css"> <style> html {font-size: 17px;} .franklin-content {position: relative; padding-left: 8%; padding-right: 5%; line-height: 1.35em;} @media (min-width: 940px) { .franklin-content {width: 100%; margin-left: auto; margin-right: auto;} } @media (max-width: 768px) { .franklin-content {padding-left: 6%; padding-right: 6%;} } </style> <link rel=icon href="/website/assets/favicon.png"> <title>Dataflowr - Deep Learning DIY</title> <div class=sidebar > <div class="container sidebar-sticky"> <div class=sidebar-about > <img src="/website/assets/dataflowr_violet_plain_square.png" style="width: 120px; height: auto; display: inline"> <img src="/website/assets/favicon.png" style="margin-left:1em; position:relative;left:0px; top:-30px; width: 60px; height: auto; display: inline"> <h1 style="font-size:1em; opacity: 0.95;"><a href="/website/">Deep Learning DIY</a></h1> </div> <nav class=sidebar-nav > <a class="sidebar-nav-item " href="/website/modules/0-sotfware-installation"> <b>Module 0</b> - <em> Software installation</em> </a> <a class="sidebar-nav-item " href="/website/modules/1-intro-general-overview"> <b>Module 1</b> - <em>Introduction & General Overview</em> </a> <a class="sidebar-nav-item " href="/website/modules/2a-pytorch-tensors"> <b>Module 2a</b> - <em>PyTorch tensors</em> </a> <a class="sidebar-nav-item " href="/website/modules/2b-automatic-differentiation"> <b>Module 2b</b> - <em>Automatic differentiation</em> </a> <a class="sidebar-nav-item " href="/website/modules/2c-jax"> <b>Module 2c</b> - <em>Automatic differentiation: VJP and intro to JAX</em> </a> <a class="sidebar-nav-item " href="/website/modules/3-loss-functions-for-classification"> <b>Module 3</b> - <em>Loss functions for classification</em> </a> <a class="sidebar-nav-item " href="/website/modules/4-optimization-for-deep-learning"> <b>Module 4</b> - <em>Optimization for DL</em> </a> <a class="sidebar-nav-item " href="/website/modules/5-stacking-layers"> <b>Module 5</b> - <em>Stacking layers</em> </a> <a class="sidebar-nav-item " href="/website/modules/6-convolutional-neural-network"> <b>Module 6</b> - <em>Convolutional neural network</em> </a> <a class="sidebar-nav-item " href="/website/modules/7-dataloading"> <b>Module 7</b> - <em>Dataloading</em> </a> <a class="sidebar-nav-item " href="/website/modules/8a-embedding-layers"> <b>Module 8a</b> - <em>Embedding layers</em> </a> <a class="sidebar-nav-item " href="/website/modules/8b-collaborative-filtering"> <b>Module 8b</b> - <em>Collaborative filtering</em> </a> <a class="sidebar-nav-item " href="/website/modules/8c-word2vec"> <b>Module 8c</b> - <em>Word2vec</em> </a> <a class="sidebar-nav-item " href="/website/modules/9a-autoencoders"> <b>Module 9a</b> - <em>Autoencoders</em> </a> <a class="sidebar-nav-item active" href="/website/modules/9b-unet"> <b>Module 9b</b> - <em>UNets</em> </a> <a class="sidebar-nav-item " href="/website/modules/9c-flows"> <b>Module 9c</b> - <em>Flows</em> </a> <a class="sidebar-nav-item " href="/website/modules/10-generative-adversarial-networks"> <b>Module 10</b> - <em>Generative adversarial networks</em> </a> <a class="sidebar-nav-item " href="/website/modules/11a-recurrent-neural-networks-theory"> <b>Module 11a</b> - <em>Recurrent Neural Networks (theory)</em> </a> <a class="sidebar-nav-item " href="/website/modules/11b-recurrent-neural-networks-practice"> <b>Module 11b</b> - <em>RNN in practice</em> </a> <a class="sidebar-nav-item " href="/website/modules/11c-batches-with-sequences"> <b>Module 11c</b> - <em>Batches with sequences in Pytorch</em> </a> <a class="sidebar-nav-item " href="/website/modules/12-attention"> <b>Module 12</b> - <em>Attention and Transformers</em> </a> <a class="sidebar-nav-item " href="/website/modules/13-siamese"> <b>Module 13</b> - <em>Siamese Networks and Representation Learning</em> </a> <a class="sidebar-nav-item " href="/website/modules/14a-depth"> <b>Module 14a</b> - <em>The Benefits of Depth</em> </a> <a class="sidebar-nav-item " href="/website/modules/14b-depth"> <b>Module 14b</b> - <em>The Problems with Depth</em> </a> <a class="sidebar-nav-item " href="/website/modules/15-dropout"> <b>Module 15</b> - <em>Dropout</em> </a> <a class="sidebar-nav-item " href="/website/modules/16-batchnorm"> <b>Module 16</b> - <em>Batchnorm</em> </a> <a class="sidebar-nav-item " href="/website/modules/17-resnets"> <b>Module 17</b> - <em>Resnets</em> </a> <a class="sidebar-nav-item " href="/website/modules/18a-diffusion"> <b>Module 18a</b> - <em>Denoising Diffusion Probabilistic Models</em> </a> <a class="sidebar-nav-item " href="/website/modules/19-clip"> <b>Module 19</b> - <em>Zero-shot classification with CLIP</em> </a> <!-- <div class=week >Unit 7</div>--> <div class=week >Homeworks</div> <a class="sidebar-nav-item " href="/website/homework/1-mlp-from-scratch"> <b>Homework 1</b> - <em>MLP from scratch</em> </a> <a class="sidebar-nav-item " href="/website/homework/2-CAM-adversarial"> <b>Homework 2</b> - <em>Class Activation Map and adversarial examples</em> </a> <a class="sidebar-nav-item " href="/website/homework/3-VAE"> <b>Homework 3</b> - <em>VAE for MNIST clustering and generation</em> </a> <div class=week >Bonus</div> <a class="sidebar-nav-item " href="/website/modules/12-intro-julia"> <b>Module</b> - <em>Intro to Julia: Autodiff with dual numbers</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph0"> <b>Module</b> - <em>Deep learning on graphs</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph1"> <b>Graph</b> - <em>Node embeddings</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph2"> <b>Graph</b> - <em>Signal processing on graphs</em> </a> <a class="sidebar-nav-item " href="/website/modules/graph3"> <b>Graph</b> - <em> Graph embeddings and GNNs</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/GCN_inductivebias_spectral"> <b>Post</b> - <em>Spectral GCN</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/Convolutions_first"> <b>Post</b> - <em>Convolutions from first principles</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/invariant_equivariant"> <b>Post</b> - <em>Invariant and equivariant networks</em> </a> <a class="sidebar-nav-item " href="/website/modules/extras/graph_invariant"> <b>Graph</b> - <em>Exploiting Graph Invariants in Deep Learning</em> </a> <div class=week >Guest Lectures</div> <a class="sidebar-nav-item " href="/website/modules/privacy-preserving-ML"> <b>Privacy Preserving ML</b> - <em>Daniel Huynh</em> </a> </nav> </div> </div> <div class="content container"> <div class=franklin-content ><h1 id=module_9b_-_unets ><a href="#module_9b_-_unets" class=header-anchor >Module 9b - UNets</a></h1> <p><img src="../extras/unet/unet.png" alt="" /></p> <ul> <li><p><a href="https://github.com/dataflowr/notebooks/blob/master/Module9/UNet_image_seg.ipynb">UNet for image segmentation</a></p> </ul> <div class=page-foot > <div class=copyright > <a href="https://github.com/dataflowr/website/tree/master"><b>Edit this page on <img class=github-logo src="https://unpkg.com/[email protected]/dist/svg/logo-github.svg"></b></a> Last modified: July 11, 2024. Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>. </div> </div> </div> </div> |