forked from pytorch/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add cpp folder for C++ frontend examples (pytorch#492)
* Create C++ version of MNIST example * Create C++ version of DCGAN example * Update for Normalize transform
- Loading branch information
1 parent
5d27fdb
commit 29a38c6
Showing
10 changed files
with
678 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,3 +2,5 @@ dcgan/data | |
data | ||
*.pyc | ||
OpenNMT/data | ||
cpp/mnist/build | ||
cpp/dcgan/build |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
--- | ||
AccessModifierOffset: -1 | ||
AlignAfterOpenBracket: AlwaysBreak | ||
AlignConsecutiveAssignments: false | ||
AlignConsecutiveDeclarations: false | ||
AlignEscapedNewlinesLeft: true | ||
AlignOperands: false | ||
AlignTrailingComments: false | ||
AllowAllParametersOfDeclarationOnNextLine: false | ||
AllowShortBlocksOnASingleLine: false | ||
AllowShortCaseLabelsOnASingleLine: false | ||
AllowShortFunctionsOnASingleLine: Empty | ||
AllowShortIfStatementsOnASingleLine: false | ||
AllowShortLoopsOnASingleLine: false | ||
AlwaysBreakAfterReturnType: None | ||
AlwaysBreakBeforeMultilineStrings: true | ||
AlwaysBreakTemplateDeclarations: true | ||
BinPackArguments: false | ||
BinPackParameters: false | ||
BraceWrapping: | ||
AfterClass: false | ||
AfterControlStatement: false | ||
AfterEnum: false | ||
AfterFunction: false | ||
AfterNamespace: false | ||
AfterObjCDeclaration: false | ||
AfterStruct: false | ||
AfterUnion: false | ||
BeforeCatch: false | ||
BeforeElse: false | ||
IndentBraces: false | ||
BreakBeforeBinaryOperators: None | ||
BreakBeforeBraces: Attach | ||
BreakBeforeTernaryOperators: true | ||
BreakConstructorInitializersBeforeComma: false | ||
BreakAfterJavaFieldAnnotations: false | ||
BreakStringLiterals: false | ||
ColumnLimit: 80 | ||
CommentPragmas: '^ IWYU pragma:' | ||
CompactNamespaces: false | ||
ConstructorInitializerAllOnOneLineOrOnePerLine: true | ||
ConstructorInitializerIndentWidth: 4 | ||
ContinuationIndentWidth: 4 | ||
Cpp11BracedListStyle: true | ||
DerivePointerAlignment: false | ||
DisableFormat: false | ||
ForEachMacros: [ FOR_EACH_RANGE, FOR_EACH, ] | ||
IncludeCategories: | ||
- Regex: '^<.*\.h(pp)?>' | ||
Priority: 1 | ||
- Regex: '^<.*' | ||
Priority: 2 | ||
- Regex: '.*' | ||
Priority: 3 | ||
IndentCaseLabels: true | ||
IndentWidth: 2 | ||
IndentWrappedFunctionNames: false | ||
KeepEmptyLinesAtTheStartOfBlocks: false | ||
MacroBlockBegin: '' | ||
MacroBlockEnd: '' | ||
MaxEmptyLinesToKeep: 1 | ||
NamespaceIndentation: None | ||
ObjCBlockIndentWidth: 2 | ||
ObjCSpaceAfterProperty: false | ||
ObjCSpaceBeforeProtocolList: false | ||
PenaltyBreakBeforeFirstCallParameter: 1 | ||
PenaltyBreakComment: 300 | ||
PenaltyBreakFirstLessLess: 120 | ||
PenaltyBreakString: 1000 | ||
PenaltyExcessCharacter: 1000000 | ||
PenaltyReturnTypeOnItsOwnLine: 2000000 | ||
PointerAlignment: Left | ||
ReflowComments: true | ||
SortIncludes: true | ||
SpaceAfterCStyleCast: false | ||
SpaceBeforeAssignmentOperators: true | ||
SpaceBeforeParens: ControlStatements | ||
SpaceInEmptyParentheses: false | ||
SpacesBeforeTrailingComments: 1 | ||
SpacesInAngles: false | ||
SpacesInContainerLiterals: true | ||
SpacesInCStyleCastParentheses: false | ||
SpacesInParentheses: false | ||
SpacesInSquareBrackets: false | ||
Standard: Cpp11 | ||
TabWidth: 8 | ||
UseTab: Never | ||
... |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
cmake_minimum_required(VERSION 3.0 FATAL_ERROR) | ||
project(dcgan) | ||
|
||
find_package(Torch REQUIRED) | ||
|
||
option(DOWNLOAD_MNIST "Download the MNIST dataset from the internet" ON) | ||
if (DOWNLOAD_MNIST) | ||
message(STATUS "Downloading MNIST dataset") | ||
execute_process( | ||
COMMAND python ${CMAKE_CURRENT_LIST_DIR}/../tools/download_mnist.py | ||
-d ${CMAKE_BINARY_DIR}/data | ||
ERROR_VARIABLE DOWNLOAD_ERROR) | ||
if (DOWNLOAD_ERROR) | ||
message(FATAL_ERROR "Error downloading MNIST dataset: ${DOWNLOAD_ERROR}") | ||
endif() | ||
endif() | ||
|
||
add_executable(dcgan dcgan.cpp) | ||
target_link_libraries(dcgan "${TORCH_LIBRARIES}") | ||
set_property(TARGET dcgan PROPERTY CXX_STANDARD 11) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
# DCGAN Example with the PyTorch C++ Frontend | ||
|
||
This folder contains an example of training a DCGAN to generate MNIST digits | ||
with the PyTorch C++ frontend. | ||
|
||
The entire training code is contained in `dcgan.cpp`. | ||
|
||
To build the code, run the following commands from your terminal: | ||
|
||
```shell | ||
$ cd dcgan | ||
$ mkdir build | ||
$ cd build | ||
$ cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch .. | ||
$ make | ||
``` | ||
|
||
where `/path/to/libtorch` should be the path to the unzipped *LibTorch* | ||
distribution, which you can get from the [PyTorch | ||
homepage](https://pytorch.org/get-started/locally/). | ||
|
||
Execute the compiled binary to train the model: | ||
|
||
```shell | ||
$ ./dcgan | ||
[ 1/30][200/938] D_loss: 0.4953 | G_loss: 4.0195 | ||
-> checkpoint 1 | ||
[ 1/30][400/938] D_loss: 0.3610 | G_loss: 4.8148 | ||
-> checkpoint 2 | ||
[ 1/30][600/938] D_loss: 0.4072 | G_loss: 4.36760 | ||
-> checkpoint 3 | ||
[ 1/30][800/938] D_loss: 0.4444 | G_loss: 4.0250 | ||
-> checkpoint 4 | ||
[ 2/30][200/938] D_loss: 0.3761 | G_loss: 3.8790 | ||
-> checkpoint 5 | ||
[ 2/30][400/938] D_loss: 0.3977 | G_loss: 3.3315 | ||
-> checkpoint 6 | ||
[ 2/30][600/938] D_loss: 0.3815 | G_loss: 3.5696 | ||
-> checkpoint 7 | ||
[ 2/30][800/938] D_loss: 0.4039 | G_loss: 3.2759 | ||
-> checkpoint 8 | ||
[ 3/30][200/938] D_loss: 0.4236 | G_loss: 4.5132 | ||
-> checkpoint 9 | ||
[ 3/30][400/938] D_loss: 0.3645 | G_loss: 3.9759 | ||
-> checkpoint 10 | ||
... | ||
``` | ||
|
||
The training script periodically generates image samples. Use the | ||
`display_samples.py` script situated in this folder to generate a plot image. | ||
For example: | ||
|
||
```shell | ||
$ python display_samples.py -i dcgan-sample-10.png | ||
Saved out.png | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
#include <torch/torch.h> | ||
|
||
#include <cmath> | ||
#include <cstdio> | ||
#include <iostream> | ||
|
||
// The size of the noise vector fed to the generator. | ||
const int64_t kNoiseSize = 100; | ||
|
||
// The batch size for training. | ||
const int64_t kBatchSize = 64; | ||
|
||
// The number of epochs to train. | ||
const int64_t kNumberOfEpochs = 30; | ||
|
||
// Where to find the MNIST dataset. | ||
const char* kDataFolder = "./data"; | ||
|
||
// After how many batches to create a new checkpoint periodically. | ||
const int64_t kCheckpointEvery = 200; | ||
|
||
// How many images to sample at every checkpoint. | ||
const int64_t kNumberOfSamplesPerCheckpoint = 10; | ||
|
||
// Set to `true` to restore models and optimizers from previously saved | ||
// checkpoints. | ||
const bool kRestoreFromCheckpoint = false; | ||
|
||
// After how many batches to log a new update with the loss value. | ||
const int64_t kLogInterval = 10; | ||
|
||
using namespace torch; | ||
|
||
int main(int argc, const char* argv[]) { | ||
torch::manual_seed(1); | ||
|
||
// Create the device we pass around based on whether CUDA is available. | ||
torch::Device device(torch::kCPU); | ||
if (torch::cuda::is_available()) { | ||
std::cout << "CUDA is available! Training on GPU." << std::endl; | ||
device = torch::Device(torch::kCUDA); | ||
} | ||
|
||
nn::Sequential generator( | ||
// Layer 1 | ||
nn::Conv2d(nn::Conv2dOptions(kNoiseSize, 256, 4) | ||
.with_bias(false) | ||
.transposed(true)), | ||
nn::BatchNorm(256), | ||
nn::Functional(torch::relu), | ||
// Layer 2 | ||
nn::Conv2d(nn::Conv2dOptions(256, 128, 3) | ||
.stride(2) | ||
.padding(1) | ||
.with_bias(false) | ||
.transposed(true)), | ||
nn::BatchNorm(128), | ||
nn::Functional(torch::relu), | ||
// Layer 3 | ||
nn::Conv2d(nn::Conv2dOptions(128, 64, 4) | ||
.stride(2) | ||
.padding(1) | ||
.with_bias(false) | ||
.transposed(true)), | ||
nn::BatchNorm(64), | ||
nn::Functional(torch::relu), | ||
// Layer 4 | ||
nn::Conv2d(nn::Conv2dOptions(64, 1, 4) | ||
.stride(2) | ||
.padding(1) | ||
.with_bias(false) | ||
.transposed(true)), | ||
nn::Functional(torch::tanh)); | ||
generator->to(device); | ||
|
||
nn::Sequential discriminator( | ||
// Layer 1 | ||
nn::Conv2d( | ||
nn::Conv2dOptions(1, 64, 4).stride(2).padding(1).with_bias(false)), | ||
nn::Functional(torch::leaky_relu, 0.2), | ||
// Layer 2 | ||
nn::Conv2d( | ||
nn::Conv2dOptions(64, 128, 4).stride(2).padding(1).with_bias(false)), | ||
nn::BatchNorm(128), | ||
nn::Functional(torch::leaky_relu, 0.2), | ||
// Layer 3 | ||
nn::Conv2d( | ||
nn::Conv2dOptions(128, 256, 4).stride(2).padding(1).with_bias(false)), | ||
nn::BatchNorm(256), | ||
nn::Functional(torch::leaky_relu, 0.2), | ||
// Layer 4 | ||
nn::Conv2d( | ||
nn::Conv2dOptions(256, 1, 3).stride(1).padding(0).with_bias(false)), | ||
nn::Functional(torch::sigmoid)); | ||
discriminator->to(device); | ||
|
||
// Assume the MNIST dataset is available under `kDataFolder`; | ||
auto dataset = torch::data::datasets::MNIST(kDataFolder) | ||
.map(torch::data::transforms::Normalize<>(0.5, 0.5)) | ||
.map(torch::data::transforms::Stack<>()); | ||
const int64_t batches_per_epoch = | ||
std::ceil(dataset.size().value() / static_cast<double>(kBatchSize)); | ||
|
||
auto data_loader = torch::data::make_data_loader( | ||
std::move(dataset), | ||
torch::data::DataLoaderOptions().batch_size(kBatchSize).workers(2)); | ||
|
||
torch::optim::Adam generator_optimizer( | ||
generator->parameters(), torch::optim::AdamOptions(2e-4).beta1(0.5)); | ||
torch::optim::Adam discriminator_optimizer( | ||
discriminator->parameters(), torch::optim::AdamOptions(2e-4).beta1(0.5)); | ||
|
||
if (kRestoreFromCheckpoint) { | ||
torch::load(generator, "generator-checkpoint.pt"); | ||
torch::load(generator_optimizer, "generator-optimizer-checkpoint.pt"); | ||
torch::load(discriminator, "discriminator-checkpoint.pt"); | ||
torch::load( | ||
discriminator_optimizer, "discriminator-optimizer-checkpoint.pt"); | ||
} | ||
|
||
int64_t checkpoint_counter = 1; | ||
for (int64_t epoch = 1; epoch <= kNumberOfEpochs; ++epoch) { | ||
int64_t batch_index = 0; | ||
for (torch::data::Example<>& batch : *data_loader) { | ||
// Train discriminator with real images. | ||
discriminator->zero_grad(); | ||
torch::Tensor real_images = batch.data.to(device); | ||
torch::Tensor real_labels = | ||
torch::empty(batch.data.size(0), device).uniform_(0.8, 1.0); | ||
torch::Tensor real_output = discriminator->forward(real_images); | ||
torch::Tensor d_loss_real = | ||
torch::binary_cross_entropy(real_output, real_labels); | ||
d_loss_real.backward(); | ||
|
||
// Train discriminator with fake images. | ||
torch::Tensor noise = | ||
torch::randn({batch.data.size(0), kNoiseSize, 1, 1}, device); | ||
torch::Tensor fake_images = generator->forward(noise); | ||
torch::Tensor fake_labels = torch::zeros(batch.data.size(0), device); | ||
torch::Tensor fake_output = discriminator->forward(fake_images.detach()); | ||
torch::Tensor d_loss_fake = | ||
torch::binary_cross_entropy(fake_output, fake_labels); | ||
d_loss_fake.backward(); | ||
|
||
torch::Tensor d_loss = d_loss_real + d_loss_fake; | ||
discriminator_optimizer.step(); | ||
|
||
// Train generator. | ||
generator->zero_grad(); | ||
fake_labels.fill_(1); | ||
fake_output = discriminator->forward(fake_images); | ||
torch::Tensor g_loss = | ||
torch::binary_cross_entropy(fake_output, fake_labels); | ||
g_loss.backward(); | ||
generator_optimizer.step(); | ||
|
||
if (batch_index % kLogInterval == 0) { | ||
std::printf( | ||
"\r[%2ld/%2ld][%3ld/%3ld] D_loss: %.4f | G_loss: %.4f", | ||
epoch, | ||
kNumberOfEpochs, | ||
++batch_index, | ||
batches_per_epoch, | ||
d_loss.item<float>(), | ||
g_loss.item<float>()); | ||
} | ||
|
||
if (batch_index % kCheckpointEvery == 0) { | ||
// Checkpoint the model and optimizer state. | ||
torch::save(generator, "generator-checkpoint.pt"); | ||
torch::save(generator_optimizer, "generator-optimizer-checkpoint.pt"); | ||
torch::save(discriminator, "discriminator-checkpoint.pt"); | ||
torch::save( | ||
discriminator_optimizer, "discriminator-optimizer-checkpoint.pt"); | ||
// Sample the generator and save the images. | ||
torch::Tensor samples = generator->forward(torch::randn( | ||
{kNumberOfSamplesPerCheckpoint, kNoiseSize, 1, 1}, device)); | ||
torch::save( | ||
(samples + 1.0) / 2.0, | ||
torch::str("dcgan-sample-", checkpoint_counter, ".pt")); | ||
std::cout << "\n-> checkpoint " << ++checkpoint_counter << '\n'; | ||
} | ||
} | ||
} | ||
|
||
std::cout << "Training complete!" << std::endl; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
from __future__ import print_function | ||
from __future__ import unicode_literals | ||
|
||
import argparse | ||
|
||
import matplotlib.pyplot as plt | ||
import torch | ||
|
||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-i", "--sample-file", required=True) | ||
parser.add_argument("-o", "--out-file", default="out.png") | ||
parser.add_argument("-d", "--dimension", type=int, default=3) | ||
options = parser.parse_args() | ||
|
||
module = torch.jit.load(options.sample_file) | ||
images = list(module.parameters())[0] | ||
|
||
for index in range(options.dimension * options.dimension): | ||
image = images[index].detach().cpu().reshape(28, 28).mul(255).to(torch.uint8) | ||
array = image.numpy() | ||
axis = plt.subplot(options.dimension, options.dimension, 1 + index) | ||
plt.imshow(array, cmap="gray") | ||
axis.get_xaxis().set_visible(False) | ||
axis.get_yaxis().set_visible(False) | ||
|
||
plt.savefig(options.out_file) | ||
print("Saved ", options.out_file) |
Oops, something went wrong.