Skip to content

A framework for blind denoising with self-supervision.

License

Notifications You must be signed in to change notification settings

deepskies/noise2self

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Noise2Self: Blind Denoising by Self-Supervision

This repo demonstrates a framework for blind denoising high-dimensional measurements, as described in the paper. It can be used to calibrate classical image denoisers and train deep neural nets; the same principle works on matrices of single-cell gene expression.

The result of training a U-Net to denoise a stack of noisy Chinese characters. Note that the only input is the noisy data; no ground truth is necessary.

Images

The notebook Intro to Calibration shows how to calibrate any traditional image denoising model, such as median filtering, wavelet thresholding, or non-local means. We use the excellent scikit-image implementations of these methods, and have submitted a PR to incorporate self-supervised calibration directly into the package. (Comments welcome on the PR!)

The notebook Intro to Neural Nets shows how to train a denoising neural net using a self-supervised loss, on the simple example of MNIST digits. The notebook runs in less than a minute, on CPU, on a MacBook Pro. We implement this in pytorch.

Because the self-supervised loss is much easier to implement than the data loading, GPU management, logging, and architecture design required for handling any particular dataset, we recommend that you take any existing pipeline for your data and simply modify the training loop.

Traditional Supervised Learning

for i, batch in enumerate(data_loader):
    x, y = batch
    output = model(x)
    loss = loss_function(output, y)

Self-Supervised Learning

from mask import Masker
masker = Masker()
for i, batch in enumerate(data_loader):
    x, _ = batch
    
    input, mask = masker.mask(noisy_images, i)
    output = model(input)
    
    loss = loss_function(output*mask, x*mask)

Dependencies are in the environment.yml file.

The remaining notebooks generate figures from the paper.

About

A framework for blind denoising with self-supervision.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.7%
  • Python 0.3%