-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2f14cc0
commit b9d22e2
Showing
1 changed file
with
325 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,325 @@ | ||
from laddu import Event, Dataset, Vector3, Mass, Manager, parameter | ||
from laddu.amplitudes.kmatrix import ( | ||
KopfKMatrixF0, | ||
KopfKMatrixF2, | ||
KopfKMatrixA0, | ||
KopfKMatrixA2, | ||
KopfKMatrixRho, | ||
KopfKMatrixPi1, | ||
) | ||
import pytest | ||
|
||
|
||
def make_test_event() -> Event: | ||
return Event( | ||
[ | ||
Vector3(0.0, 0.0, 8.747).with_mass(0.0), | ||
Vector3(0.119, 0.374, 0.222).with_mass(1.007), | ||
Vector3(-0.112, 0.293, 3.081).with_mass(0.498), | ||
Vector3(-0.007, -0.667, 5.446).with_mass(0.498), | ||
], | ||
[Vector3(0.385, 0.022, 0.000)], | ||
0.48, | ||
) | ||
|
||
|
||
def make_test_dataset() -> Dataset: | ||
return Dataset([make_test_event()]) | ||
|
||
|
||
def test_f0_evaluation(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixF0( | ||
'f0', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
(parameter('p4'), parameter('p5')), | ||
(parameter('p6'), parameter('p7')), | ||
(parameter('p8'), parameter('p9')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) | ||
assert pytest.approx(result[0].real) == 0.2674945 | ||
assert pytest.approx(result[0].imag) == 0.7289451 | ||
|
||
|
||
def test_f0_gradient(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixF0( | ||
'f0', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
(parameter('p4'), parameter('p5')), | ||
(parameter('p6'), parameter('p7')), | ||
(parameter('p8'), parameter('p9')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate_gradient( | ||
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] | ||
) | ||
assert pytest.approx(result[0][0].real) == -0.0324912 | ||
assert pytest.approx(result[0][0].imag) == -0.01107348 | ||
assert pytest.approx(result[0][1].real) == pytest.approx(-result[0][0].imag) | ||
assert pytest.approx(result[0][1].imag) == pytest.approx(result[0][0].real) | ||
assert pytest.approx(result[0][2].real) == 0.0241053 | ||
assert pytest.approx(result[0][2].imag) == 0.007918499 | ||
assert pytest.approx(result[0][3].real) == pytest.approx(-result[0][2].imag) | ||
assert pytest.approx(result[0][3].imag) == pytest.approx(result[0][2].real) | ||
assert pytest.approx(result[0][4].real) == -0.0316345 | ||
assert pytest.approx(result[0][4].imag) == 0.01491556 | ||
assert pytest.approx(result[0][5].real) == pytest.approx(-result[0][4].imag) | ||
assert pytest.approx(result[0][5].imag) == pytest.approx(result[0][4].real) | ||
assert pytest.approx(result[0][6].real) == 0.5838982 | ||
assert pytest.approx(result[0][6].imag) == 0.2071617 | ||
assert pytest.approx(result[0][7].real) == pytest.approx(-result[0][6].imag) | ||
assert pytest.approx(result[0][7].imag) == pytest.approx(result[0][6].real) | ||
assert pytest.approx(result[0][8].real) == 0.0914546 | ||
assert pytest.approx(result[0][8].imag) == 0.03607718 | ||
assert pytest.approx(result[0][9].real) == pytest.approx(-result[0][8].imag) | ||
assert pytest.approx(result[0][9].imag) == pytest.approx(result[0][8].real) | ||
|
||
|
||
def test_f2_evaluation(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixF2( | ||
'f2', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
(parameter('p4'), parameter('p5')), | ||
(parameter('p6'), parameter('p7')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]) | ||
assert pytest.approx(result[0].real) == 0.02523304 | ||
assert pytest.approx(result[0].imag) == 0.3971239 | ||
|
||
|
||
def test_f2_gradient(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixF2( | ||
'f2', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
(parameter('p4'), parameter('p5')), | ||
(parameter('p6'), parameter('p7')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate_gradient([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]) | ||
assert pytest.approx(result[0][0].real) == -0.3078948 | ||
assert pytest.approx(result[0][0].imag) == 0.3808689 | ||
assert pytest.approx(result[0][1].real) == pytest.approx(-result[0][0].imag) | ||
assert pytest.approx(result[0][1].imag) == pytest.approx(result[0][0].real) | ||
assert pytest.approx(result[0][2].real) == 0.4290085 | ||
assert pytest.approx(result[0][2].imag) == 0.0799660 | ||
assert pytest.approx(result[0][3].real) == pytest.approx(-result[0][2].imag) | ||
assert pytest.approx(result[0][3].imag) == pytest.approx(result[0][2].real) | ||
assert pytest.approx(result[0][4].real) == 0.1657487 | ||
assert pytest.approx(result[0][4].imag) == -0.00413829 | ||
assert pytest.approx(result[0][5].real) == pytest.approx(-result[0][4].imag) | ||
assert pytest.approx(result[0][5].imag) == pytest.approx(result[0][4].real) | ||
assert pytest.approx(result[0][6].real) == 0.0594691 | ||
assert pytest.approx(result[0][6].imag) == 0.1143819 | ||
assert pytest.approx(result[0][7].real) == pytest.approx(-result[0][6].imag) | ||
assert pytest.approx(result[0][7].imag) == pytest.approx(result[0][6].real) | ||
|
||
|
||
def test_a0_evaluation(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixA0( | ||
'a0', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate([0.1, 0.2, 0.3, 0.4]) | ||
assert pytest.approx(result[0].real) == -0.8002759 | ||
assert pytest.approx(result[0].imag) == -0.1359306 | ||
|
||
|
||
def test_a0_gradient(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixA0( | ||
'a0', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate_gradient([0.1, 0.2, 0.3, 0.4]) | ||
assert pytest.approx(result[0][0].real) == 0.2906192 | ||
assert pytest.approx(result[0][0].imag) == -0.0998906 | ||
assert pytest.approx(result[0][1].real) == pytest.approx(-result[0][0].imag) | ||
assert pytest.approx(result[0][1].imag) == pytest.approx(result[0][0].real) | ||
assert pytest.approx(result[0][2].real) == -1.3136838 | ||
assert pytest.approx(result[0][2].imag) == 1.1380269 | ||
assert pytest.approx(result[0][3].real) == pytest.approx(-result[0][2].imag) | ||
assert pytest.approx(result[0][3].imag) == pytest.approx(result[0][2].real) | ||
|
||
|
||
def test_a2_evaluation(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixA2( | ||
'a2', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate([0.1, 0.2, 0.3, 0.4]) | ||
assert pytest.approx(result[0].real) == -0.2092661 | ||
assert pytest.approx(result[0].imag) == -0.0985062 | ||
|
||
|
||
def test_a2_gradient(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixA2( | ||
'a2', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate_gradient([0.1, 0.2, 0.3, 0.4]) | ||
assert pytest.approx(result[0][0].real) == -0.5756896 | ||
assert pytest.approx(result[0][0].imag) == 0.9398863 | ||
assert pytest.approx(result[0][1].real) == pytest.approx(-result[0][0].imag) | ||
assert pytest.approx(result[0][1].imag) == pytest.approx(result[0][0].real) | ||
assert pytest.approx(result[0][2].real) == -0.0811143 | ||
assert pytest.approx(result[0][2].imag) == -0.1522787 | ||
assert pytest.approx(result[0][3].real) == pytest.approx(-result[0][2].imag) | ||
assert pytest.approx(result[0][3].imag) == pytest.approx(result[0][2].real) | ||
|
||
|
||
def test_rho_evaluation(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixRho( | ||
'rho', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate([0.1, 0.2, 0.3, 0.4]) | ||
assert pytest.approx(result[0].real) == 0.0948355 | ||
assert pytest.approx(result[0].imag) == 0.2609183 | ||
|
||
|
||
def test_rho_gradient(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixRho( | ||
'rho', | ||
( | ||
(parameter('p0'), parameter('p1')), | ||
(parameter('p2'), parameter('p3')), | ||
), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate_gradient([0.1, 0.2, 0.3, 0.4]) | ||
assert pytest.approx(result[0][0].real) == 0.0265203 | ||
assert pytest.approx(result[0][0].imag) == -0.02660265 | ||
assert pytest.approx(result[0][1].real) == pytest.approx(-result[0][0].imag) | ||
assert pytest.approx(result[0][1].imag) == pytest.approx(result[0][0].real) | ||
assert pytest.approx(result[0][2].real) == 0.5172379 | ||
assert pytest.approx(result[0][2].imag) == 0.1707373 | ||
assert pytest.approx(result[0][3].real) == pytest.approx(-result[0][2].imag) | ||
assert pytest.approx(result[0][3].imag) == pytest.approx(result[0][2].real) | ||
|
||
|
||
def test_pi1_evaluation(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixPi1( | ||
'pi1', | ||
((parameter('p0'), parameter('p1')),), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate([0.1, 0.2]) | ||
assert pytest.approx(result[0].real) == -0.1101758 | ||
assert pytest.approx(result[0].imag) == 0.2638717 | ||
|
||
|
||
def test_pi1_gradient(): | ||
manager = Manager() | ||
res_mass = Mass([2, 3]) | ||
amp = KopfKMatrixPi1( | ||
'pi1', | ||
((parameter('p0'), parameter('p1')),), | ||
1, | ||
res_mass, | ||
) | ||
aid = manager.register(amp) | ||
dataset = make_test_dataset() | ||
evaluator = manager.load(aid, dataset) | ||
result = evaluator.evaluate_gradient([0.1, 0.2]) | ||
assert pytest.approx(result[0][0].real) == -14.7987174 | ||
assert pytest.approx(result[0][0].imag) == -5.8430094 | ||
assert pytest.approx(result[0][1].real) == pytest.approx(-result[0][0].imag) | ||
assert pytest.approx(result[0][1].imag) == pytest.approx(result[0][0].real) |