-
Notifications
You must be signed in to change notification settings - Fork 69
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[WIP] add a preprocessor #207
Closed
Closed
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,244 @@ | ||||||
import operator | ||||||
import functools | ||||||
import collections | ||||||
|
||||||
from .backends import get_func | ||||||
from .parser import find_output_str | ||||||
|
||||||
|
||||||
def unique(it): | ||||||
"""Iterate over the unique, ordered elements of ``it``.""" | ||||||
return dict.fromkeys(it).keys() | ||||||
|
||||||
|
||||||
def multiply(*xs): | ||||||
"""Functional version of ``x[0] * x[1] * ...``.""" | ||||||
return functools.reduce(operator.mul, xs) | ||||||
|
||||||
|
||||||
class Lazy: | ||||||
"""A tiny lazy computation class.""" | ||||||
|
||||||
__slots__ = ("inds", "f", "args") | ||||||
|
||||||
def __init__(self, inds, f=None, *args): | ||||||
self.inds = inds | ||||||
self.f = f | ||||||
self.args = args | ||||||
|
||||||
def compute(self): | ||||||
"""Compute the result of this lazy node, first computing all lazy | ||||||
children. | ||||||
""" | ||||||
return self.f( | ||||||
*( | ||||||
arg.compute() if isinstance(arg, Lazy) else arg | ||||||
for arg in self.args | ||||||
) | ||||||
) | ||||||
|
||||||
def __repr__(self): | ||||||
return f"Lazy('{self.inds}', {self.f}, {self.args})" | ||||||
|
||||||
|
||||||
class SimplifyExpression: | ||||||
"""A callable object that transforms a list of arrays into a new simplified | ||||||
list of arrays. | ||||||
""" | ||||||
|
||||||
def __init__(self, lazy_inputs, lazy_outputs): | ||||||
self._lazy_inputs = lazy_inputs | ||||||
self._lazy_outputs = lazy_outputs | ||||||
|
||||||
def __call__(self, arrays): | ||||||
for a, lz in zip(arrays, self._lazy_inputs): | ||||||
# inject arrays | ||||||
lz.args = (a,) | ||||||
# recursively materialize the new terms | ||||||
return tuple(lz.compute() for lz in self._lazy_outputs) | ||||||
|
||||||
def __repr__(self): | ||||||
return ( | ||||||
f"SimplifyExpression('" | ||||||
f"{','.join(lz.inds for lz in self._lazy_inputs)}->" | ||||||
f"{','.join(lz.inds for lz in self._lazy_outputs)}')" | ||||||
) | ||||||
|
||||||
|
||||||
def make_simplifier(*args, backend="numpy"): | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
"""Take a einsum equation / specfification and return a new minimial | ||||||
'processed' specfication and a function which will perform said processing. | ||||||
The simplifications are as follows: | ||||||
|
||||||
- All indices which only appear on a single input (and not the output) | ||||||
are summed over. | ||||||
- All indices which appear multiple times on the same term are traced. | ||||||
- All scalars are multiplied into the smallest other term | ||||||
- All terms with the same indices are multiplied (hamadard product | ||||||
/ elementwise) into a single term. | ||||||
|
||||||
Parameters | ||||||
---------- | ||||||
args : str, or tuple | ||||||
The einsum equation. It can already be split into inputs and output, | ||||||
and the inputs can already be split into a list of terms. | ||||||
backend : str, optional | ||||||
The backend to use for any ``einsum`` operations (tracing and summing). | ||||||
|
||||||
Returns | ||||||
------- | ||||||
new_spec : str, or tuple | ||||||
The new specification, with all the simplifications applied, in the | ||||||
same format as ``args`` was supplied. | ||||||
simplifier : callable | ||||||
A function which takes a list of arrays and returns the result of | ||||||
applying the simplifications to the arrays, i.e. compatible with the | ||||||
new einsum specification also returned. | ||||||
|
||||||
Examples | ||||||
-------- | ||||||
|
||||||
>>> eq = ',ab,abee,,cd,cd,dd->ac' | ||||||
>>> arrays = helpers.build_views(eq) | ||||||
>>> new_eq, simplifier = make_simplifier(eq) | ||||||
>>> new_eq | ||||||
'ab,cd,d->ac' | ||||||
|
||||||
>>> sarrays = simplifier(arrays) | ||||||
>>> oe.contract(new_eq, *sarrays) | ||||||
array([[0.65245661, 0.14684493, 0.42543411, 0.32350895], | ||||||
[0.38357005, 0.08632807, 0.25010672, 0.19018636]]) | ||||||
""" | ||||||
try: | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We will need quite a few tests around this tech, too bad we cannot reproduce the original parsing tech here. |
||||||
# input and output already parsed | ||||||
format = 0 | ||||||
terms, output = args | ||||||
if isinstance(terms, str): | ||||||
# input not split into list yet | ||||||
format = 1 | ||||||
terms = terms.split(",") | ||||||
except ValueError: | ||||||
# single equation form | ||||||
(eq,) = args | ||||||
try: | ||||||
# with output specified | ||||||
format = 2 | ||||||
inputs, output = eq.split("->") | ||||||
except ValueError: | ||||||
# not output specified | ||||||
format = 3 | ||||||
inputs = eq | ||||||
output = find_output_str(inputs) | ||||||
terms = inputs.split(",") | ||||||
|
||||||
# initial maps of where indices and whole terms appear | ||||||
ind_appearances = collections.defaultdict(set) | ||||||
term_appearances = collections.defaultdict(set) | ||||||
queue = [] | ||||||
for t, term in enumerate(terms): | ||||||
queue.append(t) | ||||||
term_appearances[term].add(t) | ||||||
for ix in term: | ||||||
ind_appearances[ix].add(t) | ||||||
for ix in output: | ||||||
ind_appearances[ix].add(-1) | ||||||
|
||||||
# want to make everything lazy | ||||||
lazy_inputs = [Lazy(term, lambda x: x) for term in terms] | ||||||
lazy_temps = dict(enumerate(lazy_inputs)) | ||||||
|
||||||
# flag to check if we should keep looping | ||||||
should_run = True | ||||||
while should_run: | ||||||
should_run = False | ||||||
|
||||||
# XXX: only iterate over t we need to check, not everything? | ||||||
for t, lz in lazy_temps.items(): | ||||||
term = lz.inds | ||||||
reduced = "" | ||||||
# unique call takes care of tracing | ||||||
for ix in unique(term): | ||||||
if len(ind_appearances[ix]) == 1: | ||||||
# ind guaranteed only appears here - remove | ||||||
del ind_appearances[ix] | ||||||
else: | ||||||
# keep after reduction | ||||||
reduced += ix | ||||||
|
||||||
if reduced != term: | ||||||
# perform reduction (summing and/or tracing) | ||||||
f = functools.partial( | ||||||
get_func("einsum", backend), f"{term}->{reduced}" | ||||||
) | ||||||
# replace with new reduce lazy node | ||||||
lazy_temps[t] = Lazy(reduced, f, lz) | ||||||
|
||||||
# update maps | ||||||
t_aps = term_appearances[term] | ||||||
if len(t_aps) == 1: | ||||||
# entry would be empty set | ||||||
del term_appearances[term] | ||||||
else: | ||||||
t_aps.remove(t) | ||||||
term_appearances[reduced].add(t) | ||||||
|
||||||
# check multi term reductions | ||||||
for term, where in tuple(term_appearances.items()): | ||||||
if term == "": | ||||||
# all the scalars | ||||||
try: | ||||||
# try to multiply into smallest term | ||||||
_, first, lz = min( | ||||||
(len(lz.inds), t, lz) | ||||||
for t, lz in lazy_temps.items() | ||||||
if (lz is not None) and (lz.inds != "") | ||||||
) | ||||||
inds = lz.inds | ||||||
args = (lz, *map(lazy_temps.pop, where)) | ||||||
except ValueError: | ||||||
# which may not exist... (if all inputs are scalars) | ||||||
# multiply into a single scalar instead | ||||||
first = min(where) | ||||||
inds = "" | ||||||
args = map(lazy_temps.pop, where) | ||||||
lazy_temps[first] = Lazy(inds, multiply, *args) | ||||||
term_appearances.pop(term) | ||||||
|
||||||
elif len(where) > 1: | ||||||
# hadamard deduplication | ||||||
first = min(where) | ||||||
args = [] | ||||||
rest = set() | ||||||
for t in where: | ||||||
if t == first: | ||||||
# don't pop the first to maintain order | ||||||
args.append(lazy_temps[t]) | ||||||
else: | ||||||
args.append(lazy_temps.pop(t)) | ||||||
rest.add(t) | ||||||
lazy_temps[first] = Lazy(term, multiply, *args) | ||||||
term_appearances[term] = {first} | ||||||
for ix in term: | ||||||
ind_appearances[ix] -= rest | ||||||
|
||||||
# we only need to run again if we did hadamard deduplication | ||||||
should_run = True | ||||||
|
||||||
# get the final terms and lazy nodes | ||||||
new_terms = [] | ||||||
lazy_outputs = [] | ||||||
for lz in lazy_temps.values(): | ||||||
new_terms.append(lz.inds) | ||||||
lazy_outputs.append(lz) | ||||||
|
||||||
# return new equation in same specifcation, and the simplifier | ||||||
if format == 0: | ||||||
new = new_terms, output | ||||||
elif format == 1: | ||||||
new = ",".join(new_terms), output | ||||||
else: # format == 2,3: | ||||||
# we have to return output to guarantee einsum is still valid | ||||||
# e.g. 'ab,ab' after simplification requires 'ab->' not 'ab' | ||||||
new = ",".join(new_terms) + "->" + output | ||||||
|
||||||
return new, SimplifyExpression(lazy_inputs, lazy_outputs) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can we type these? I cannot quite tell what this is doing, somewhat looks like a set operation.