- Implicit/voxel/volume modeling
- Voxel remeshing
- Boolean operations
- Offsetting
- Explicit modeling
- Mesh simplification (decimation)
- Isotropic remeshing
You can read/write STL files using StlReader
and StlWriter
structs. Ony binary STLs are supported.
use std::path::Path;
use baby_shark::{
io::stl::{StlReader, StlWriter},
mesh::corner_table::prelude::CornerTableF
};
fn main() {
let mut reader = StlReader::new();
let mesh: CornerTableF = reader.read_stl_from_file(Path::new("./read.stl"))
.expect("Read mesh from STL file");
let writer = StlWriter::new();
writer.write_stl_to_file(&mesh, Path::new("./write.stl"))
.expect("Save mesh to STL file");
}
Boolean operations are a set of operations that can be performed on volumes to combine or modify their shapes. The supported boolean operations in this library are:
- Union - combines two volumes into a single volume, resulting in a shape that includes the combined volume of both models.
- Subtract - removes the volume from another, resulting in a shape that is the difference between the two models.
- Intersect - returns the volume that is common to both models, resulting in a shape that includes only the overlapping region.
These boolean operations can be useful in various applications, such as creating complex shapes by combining simpler shapes, removing unwanted parts from a volume, or finding the intersection between two volumes.
Subtract | Union |
---|---|
The volume offsetting allows for the expansion or contraction of a model shape, serving various applications like CNC machining, collision detection, and rapid prototyping. It's a vital tool in model generation and toolpath creation. Inwards and outwards offsets are supported.
Voxel remeshing is a computational process used in computer graphics to reconstruct or optimize the topology of a three-dimensional (3D) model. Voxels are volumetric pixels that make up the 3D space, and remeshing involves reorganizing these voxels to create a more uniform and well-defined mesh structure. Also, it comes with the benefit of removing overlapping geometry, a valuable asset in sculpting applications.
This algorithm incrementally performs simple operations such as edge splits, edge collapses, edge flips, and Laplacian smoothing.
All the vertices of the remeshed patch are reprojected to
the original surface to keep a good approximation of the input.
Any of those operations can be turned off using appropriate method (with_<operation>(false)
).
let remesher = IncrementalRemesher::new()
.with_iterations_count(10)
.with_split_edges(true)
.with_collapse_edges(true)
.with_flip_edges(true)
.with_shift_vertices(true)
.with_project_vertices(true);
remesher.remesh(&mut mesh, 0.002f32);
This library implements incremental edge decimation algorithm. On each iteration edge with lowest collapse cost is collapsed. Several stop condition are supported:
- Max error - algorithm stops when collapse lowest cost is bigger than given value
- Min faces count - algorithm stops when faces count drops below given value
- Bounding sphere - adaptive error algorithm based upon distance from a point. Useful for LOD mesh decimation.
let mut decimator = EdgeDecimator::new()
.decimation_criteria(ConstantErrorDecimationCriteria::new(0.0005))
.min_faces_count(Some(10000));
decimator.decimate(&mut mesh);
let origin = Point3::<f32>::origin();
let radii_error_map = vec![
(10.0f32, 0.0001f32),
(15.0f32, 0.05f32),
(40.0f32, 0.8f32),
];
let criteria = BoundingSphereDecimationCriteria::new(origin, radii_error_map);
let mut decimator = EdgeDecimator::new().decimation_criteria(criteria);
decimator.decimate(&mut mesh);