-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a notebook to compute risk rankings
- Loading branch information
Showing
1 changed file
with
243 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Generate Site Risk Scores" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import geopandas as gpd\n", | ||
"import json\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"import requests\n", | ||
"from tqdm.notebook import tqdm" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#endpoint = 'https://api.plastic.watch.earthrise.media/sites'\n", | ||
"#response = requests.get(endpoint, params={'limit':5000})\n", | ||
"#data = response.json()\n", | ||
"#gdf = gpd.GeoDataFrame.from_features(data['features'])\n", | ||
"# convert gdf columns to float if possible\n", | ||
"gdf = gpd.read_file('/Users/ckruse/Downloads/all_vietnam_metadata.geojson')\n", | ||
"for col in gdf.columns:\n", | ||
" try:\n", | ||
" gdf[col] = gdf[col].astype(float)\n", | ||
" except:\n", | ||
" pass" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"variable_classes = ['Population - 1 km', 'Soil Clay Fraction', 'Distance to Waterway (m)', 'area']\n", | ||
"stats = {}\n", | ||
"for var in variable_classes:\n", | ||
" stats[var] = {}\n", | ||
" data = gdf[gdf[var] != -1][var]\n", | ||
" print(\"min\", data.min(), \"max\", data.max())\n", | ||
" if var == 'Soil Clay Fraction':\n", | ||
" pass\n", | ||
" elif var == 'Distance to Waterway (m)':\n", | ||
" data = np.log(data + 10)\n", | ||
" else:\n", | ||
" data = np.log(data+0.1)\n", | ||
" plt.hist(data, bins=40)\n", | ||
" plt.title(var)\n", | ||
" plt.show()\n", | ||
" stdev = np.std(data)\n", | ||
" mean = np.mean(data)\n", | ||
" stats[var]['mean'] = mean\n", | ||
" stats[var]['std'] = stdev\n", | ||
"stats" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Frozen stats. We'd use these if we want to run risk calculations on site ingest in the API\n", | ||
"stats = {'Population - 1 km': {'mean': 7.417273534217326, 'std': 1.7791091219232005},\n", | ||
" 'Soil Clay Fraction': {'mean': -0.885915538147242, 'std': 0.15838979230699146},\n", | ||
" 'Distance to Waterway (m)': {'mean': 6.390775048206517, 'std': 1.179343111730756},\n", | ||
" 'area': {'mean': 7.154989549277127, 'std': 1.9026796861924273}}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"len(gdf)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"variable_classes = ['Population - 1 km', 'Soil Clay Fraction', 'Distance to Waterway (m)', 'area']\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"risk_score = []\n", | ||
"for site_index in range(len(gdf)):\n", | ||
" site = gdf.iloc[site_index]\n", | ||
" site_deviation = {}\n", | ||
" if site['area'] != 0.0 and site['Distance to Waterway (m)'] != -1:\n", | ||
" #print(site['area'], site['area'])\n", | ||
" for var in variable_classes:\n", | ||
" if var == 'Soil Clay Fraction':\n", | ||
" data = site[var].astype('float')\n", | ||
" print(data)\n", | ||
" elif var == 'Distance to Waterway (m)':\n", | ||
" data = site[var].astype('float')\n", | ||
" data = np.log(data + 10)\n", | ||
" else:\n", | ||
" data = np.log(site[var].astype('float') + 0.01)\n", | ||
" #print(var, data)\n", | ||
" #print('average', var, stats[var]['mean'])\n", | ||
" #print('Deviation', (data - stats[var]['mean']) / stats[var]['std'])\n", | ||
" site_deviation[var] = (data - stats[var]['mean']) / stats[var]['std']\n", | ||
" risk = ((61 * site_deviation['area'] + 21 * site_deviation['Population - 1 km']) - (69 * site_deviation['Distance to Waterway (m)'] + 41 * site_deviation['Soil Clay Fraction'])) / (69 + 61 + 41 + 21)\n", | ||
" risk_score.append(risk)\n", | ||
" else:\n", | ||
" risk_score.append(np.nan)\n", | ||
"risk_score = np.array(risk_score)\n", | ||
"print(len(risk_score))\n", | ||
"plt.hist(risk_score, bins=30)\n", | ||
"plt.title('Raw Risk Scores')\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"normed_risk = (risk_score - np.nanmin(risk_score)) / (np.nanmax(risk_score) - np.nanmin(risk_score))\n", | ||
"plt.hist(normed_risk[normed_risk > -5], bins=35)\n", | ||
"plt.title('Normed Risk Scores')\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"new_gdf = gdf.copy()\n", | ||
"new_gdf['risk'] = normed_risk" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# sort new_gdf by id\n", | ||
"new_gdf = new_gdf.sort_values('id')\n", | ||
"new_gdf['number'] = [i + 1 for i in range(len(new_gdf))]\n", | ||
"new_gdf.to_file('/Users/ckruse/Documents/earthrise/vietnam-waste/data/vietnam-v1.0-metadata.geojson', driver='GeoJSON')\n", | ||
"new_gdf.to_csv('/Users/ckruse/Documents/earthrise/vietnam-waste/data/vietnam-v1.0-metadata.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"study_sites = gpd.read_file('/Users/ckruse/Documents/earthrise/vietnam-waste/data/v1.0_detections_within_territories_0.25_buffer.geojson')\n", | ||
"study_sites = study_sites.sort_values('id')\n", | ||
"# use the id of the study site to find the risk score\n", | ||
"study_sites['risk'] = new_gdf[new_gdf['id'].isin(study_sites['id'])]['risk'].values\n", | ||
"# do the same for area\n", | ||
"study_sites['area'] = new_gdf[new_gdf['id'].isin(study_sites['id'])]['area'].values\n", | ||
"# do the same for number\n", | ||
"study_sites['number'] = new_gdf[new_gdf['id'].isin(study_sites['id'])]['number'].values\n", | ||
"study_sites.to_file('/Users/ckruse/Documents/earthrise/vietnam-waste/data/v1.0_detections_within_territories_0.25_buffer_risk.geojson', driver='GeoJSON')\n", | ||
"study_sites.to_csv('/Users/ckruse/Documents/earthrise/vietnam-waste/data/v1.0_detections_within_territories_0.25_buffer_risk.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# write out new_gdf to csv\n", | ||
"new_gdf.to_csv('/Users/ckruse/Downloads/all_vietnam_metadata_risk.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import requests\n", | ||
"import json\n", | ||
"endpoint = 'http://api.plastic.watch.earthrise.media/sites/'\n", | ||
"for site in tqdm(new_gdf.iterfeatures(), total=(len(new_gdf))):\n", | ||
" site_id = site['properties']['id']\n", | ||
" site_endpoint = f\"{endpoint}{site_id}\"\n", | ||
" site['id'] = site_id\n", | ||
" r = requests.put(site_endpoint, json.dumps(site))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"interpreter": { | ||
"hash": "d425afa4a959a86aa036beaa1a58ff3469f38e31f3ec97f5785c695b9108eced" | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3.9.7 64-bit ('m1-plastics': conda)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.7" | ||
}, | ||
"orig_nbformat": 4 | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |