Software companion for the paper “On optimal tests for rotational symmetry against new classes of hyperspherical distributions” (García-Portugués, Paindaveine and Verdebout, 2020). It implements the proposed tests for rotational symmetry of hyperspherical data and allows to replicate the data application presented.
Get the released version from CRAN:
# Install the package
install.packages("rotasym")
# Load package
library(rotasym)
Alternatively, get the latest version from GitHub:
# Install the package
library(devtools)
install_github("egarpor/rotasym")
# Load package
library(rotasym)
The following are some simple examples of the usage of the main function
of the package, test_rotasym
, with simulated data. More examples are
available in ?test_rotasym
.
# Sample data from a vMF (rotational symmetric distribution about mu)
n <- 200
p <- 10
theta <- c(1, rep(0, p - 1))
set.seed(123456789)
data_0 <- r_vMF(n = n, mu = theta, kappa = 1)
# theta known
test_rotasym(data = data_0, theta = theta, type = "sc")
#>
#> Scatter test for rotational symmetry
#>
#> data: data_0
#> Q_sc = 35.013, df = 44, p-value = 0.8315
test_rotasym(data = data_0, theta = theta, type = "loc_vMF")
#>
#> Location vMF test for rotational symmetry
#>
#> data: data_0
#> Q_loc_vMF = 11.316, df = 9, p-value = 0.2547
test_rotasym(data = data_0, theta = theta, type = "hyb_vMF")
#>
#> Hybrid vMF test (addition of statistics) for rotational symmetry
#>
#> data: data_0
#> Q_hyb_vMF = 46.329, df = 53, p-value = 0.7297
# theta unknown (employs the spherical mean as estimator)
test_rotasym(data = data_0, type = "sc")
#>
#> Scatter test for rotational symmetry
#>
#> data: data_0
#> Q_sc = 36.568, df = 44, p-value = 0.7793
test_rotasym(data = data_0, type = "loc_vMF")
#>
#> Location vMF test for rotational symmetry
#>
#> data: data_0
#> Q_loc_vMF = 12.335, df = 9, p-value = 0.1951
test_rotasym(data = data_0, type = "hyb_vMF")
#>
#> Hybrid vMF test (addition of statistics) for rotational symmetry
#>
#> data: data_0
#> Q_hyb_vMF = 48.902, df = 53, p-value = 0.6344
The data application in García-Portugués, Paindaveine and Verdebout (2020) can be replicated through the script sunspots-births.R (data gathering and preprocessing) and the code snippet below.
# Load data
data("sunspots_births")
sunspots_births$X <-
cbind(cos(sunspots_births$phi) * cos(sunspots_births$theta),
cos(sunspots_births$phi) * sin(sunspots_births$theta),
sin(sunspots_births$phi))
# Test rotational symmetry for the 23rd cycle
sunspots_23 <- subset(sunspots_births, cycle == 23)
test_rotasym(data = sunspots_23$X, type = "sc", theta = c(0, 0, 1))
#>
#> Scatter test for rotational symmetry
#>
#> data: sunspots_23$X
#> Q_sc = 3.5964, df = 2, p-value = 0.1656
test_rotasym(data = sunspots_23$X, type = "loc", theta = c(0, 0, 1))
#>
#> Location test for rotational symmetry
#>
#> data: sunspots_23$X
#> Q_loc = 1.5657, df = 2, p-value = 0.4571
test_rotasym(data = sunspots_23$X, type = "hyb", theta = c(0, 0, 1))
#>
#> Hybrid test (addition of statistics) for rotational symmetry
#>
#> data: sunspots_23$X
#> Q_hyb = 5.1622, df = 4, p-value = 0.2711
# Test rotational symmetry for the 22nd cycle
sunspots_22 <- subset(sunspots_births, cycle == 22)
test_rotasym(data = sunspots_22$X, type = "sc", theta = c(0, 0, 1))
#>
#> Scatter test for rotational symmetry
#>
#> data: sunspots_22$X
#> Q_sc = 4.4577, df = 2, p-value = 0.1077
test_rotasym(data = sunspots_22$X, type = "loc", theta = c(0, 0, 1))
#>
#> Location test for rotational symmetry
#>
#> data: sunspots_22$X
#> Q_loc = 8.7579, df = 2, p-value = 0.01254
test_rotasym(data = sunspots_22$X, type = "hyb", theta = c(0, 0, 1))
#>
#> Hybrid test (addition of statistics) for rotational symmetry
#>
#> data: sunspots_22$X
#> Q_hyb = 13.216, df = 4, p-value = 0.01027
# More analyses in ?sunspots_births
example("sunspots_births")
#>
#> snspt_> # Load data
#> snspt_> data("sunspots_births")
#>
#> snspt_> # Transform to Cartesian coordinates
#> snspt_> sunspots_births$X <-
#> snspt_+ cbind(cos(sunspots_births$phi) * cos(sunspots_births$theta),
#> snspt_+ cos(sunspots_births$phi) * sin(sunspots_births$theta),
#> snspt_+ sin(sunspots_births$phi))
#>
#> snspt_> # Plot data associated to the 23rd cycle
#> snspt_> sunspots_23 <- subset(sunspots_births, cycle == 23)
#>
#> snspt_> n <- nrow(sunspots_23$X)
#>
#> snspt_> if (requireNamespace("rgl")) {
#> snspt_+ rgl::plot3d(0, 0, 0, xlim = c(-1, 1), ylim = c(-1, 1), zlim = c(-1, 1),
#> snspt_+ radius = 1, type = "s", col = "lightblue", alpha = 0.25,
#> snspt_+ lit = FALSE)
#> snspt_+ }
#>
#> snspt_> n_cols <- 100
#>
#> snspt_> cuts <- cut(x = sunspots_23$date, include.lowest = TRUE,
#> snspt_+ breaks = quantile(sunspots_23$date,
#> snspt_+ probs = seq(0, 1, l = n_cols + 1)))
#>
#> snspt_> if (requireNamespace("rgl")) {
#> snspt_+ rgl::points3d(sunspots_23$X, col = viridisLite::viridis(n_cols)[cuts])
#> snspt_+ }
#>
#> snspt_> # Spörer's law: sunspots at the beginning of the solar cycle (dark blue
#> snspt_> # color) tend to appear at higher latitutes, gradually decreasing to the
#> snspt_> # equator as the solar cycle advances (yellow color)
#> snspt_>
#> snspt_> # Estimation of the density of the cosines
#> snspt_> V <- cosines(X = sunspots_23$X, theta = c(0, 0, 1))
#>
#> snspt_> h <- bw.SJ(x = V, method = "dpi")
#>
#> snspt_> plot(kde <- density(x = V, bw = h, n = 2^13, from = -1, to = 1), col = 1,
#> snspt_+ xlim = c(-1, 1), ylim = c(0, 3), axes = FALSE, main = "",
#> snspt_+ xlab = "Cosines (latitude angles)", lwd = 2)
#>
#> snspt_> at <- seq(-1, 1, by = 0.25)
#>
#> snspt_> axis(2); axis(1, at = at)
#>
#> snspt_> axis(1, at = at, line = 1, tick = FALSE,
#> snspt_+ labels = paste0("(", 90 - round(acos(at) / pi * 180, 1), "º)"))
#>
#> snspt_> rug(V)
#>
#> snspt_> legend("topright", legend = c("Full cycle", "Initial 25% cycle",
#> snspt_+ "Final 25% cycle"),
#> snspt_+ lwd = 2, col = c(1, viridisLite::viridis(12)[c(3, 8)]))
#>
#> snspt_> # Density for the observations within the initial 25% of the cycle
#> snspt_> part1 <- sunspots_23$date < quantile(sunspots_23$date, 0.25)
#>
#> snspt_> V1 <- cosines(X = sunspots_23$X[part1, ], theta = c(0, 0, 1))
#>
#> snspt_> h1 <- bw.SJ(x = V1, method = "dpi")
#>
#> snspt_> lines(kde1 <- density(x = V1, bw = h1, n = 2^13, from = -1, to = 1),
#> snspt_+ col = viridisLite::viridis(12)[3], lwd = 2)
#>
#> snspt_> # Density for the observations within the final 25% of the cycle
#> snspt_> part2 <- sunspots_23$date > quantile(sunspots_23$date, 0.75)
#>
#> snspt_> V2 <- cosines(X = sunspots_23$X[part2, ], theta = c(0, 0, 1))
#>
#> snspt_> h2 <- bw.SJ(x = V2, method = "dpi")
#>
#> snspt_> lines(kde2 <- density(x = V2, bw = h2, n = 2^13, from = -1, to = 1),
#> snspt_+ col = viridisLite::viridis(12)[8], lwd = 2)
#>
#> snspt_> # Computation the level set of a kernel density estimator that contains
#> snspt_> # at least 1 - alpha of the probability (kde stands for an object
#> snspt_> # containing the output of density(x = data))
#> snspt_> kde_level_set <- function(kde, data, alpha) {
#> snspt_+
#> snspt_+ # Estimate c from alpha
#> snspt_+ c <- quantile(approx(x = kde$x, y = kde$y, xout = data)$y, probs = alpha)
#> snspt_+
#> snspt_+ # Begin and end index for the potentially many intervals in the level sets
#> snspt_+ kde_larger_c <- kde$y >= c
#> snspt_+ run_length_kde <- rle(kde_larger_c)
#> snspt_+ begin <- which(diff(kde_larger_c) > 0) + 1
#> snspt_+ end <- begin + run_length_kde$lengths[run_length_kde$values] - 1
#> snspt_+
#> snspt_+ # Return the [a_i, b_i], i = 1, ..., K in the K rows
#> snspt_+ return(cbind(kde$x[begin], kde$x[end]))
#> snspt_+
#> snspt_+ }
#>
#> snspt_> # Level set containing the 90% of the probability, in latitude angles
#> snspt_> 90 - acos(kde_level_set(kde = kde, data = V, alpha = 0.10)) / pi * 180
#> [,1] [,2]
#> [1,] -29.448244 -2.455986
#> [2,] 2.582017 28.123329
#>
#> snspt_> # Modes (in cosines and latitude angles)
#> snspt_> modes <- c(kde$x[kde$x < 0][which.max(kde$y[kde$x < 0])],
#> snspt_+ kde$x[kde$x > 0][which.max(kde$y[kde$x > 0])])
#>
#> snspt_> 90 - acos(modes) / pi * 180
#> [1] -13.69322 16.49001
García-Portugués, E., Paindaveine, D., and Verdebout, T. (2020). On optimal tests for rotational symmetry against new classes of hyperspherical distributions. Journal of the American Statistical Association, 115(532):1873–1887. doi:10.1080/01621459.2019.1665527.