This repository has been archived by the owner on Aug 8, 2024. It is now read-only.
generated from pyiron/pyiron_module_template
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from eisenforschung/add_files
Add files
- Loading branch information
Showing
5 changed files
with
1,102 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
# coding: utf-8 | ||
# Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department | ||
# Distributed under the terms of "New BSD License", see the LICENSE file. | ||
|
||
import numpy as np | ||
|
||
__author__ = "Sam Waseda" | ||
__copyright__ = "Copyright 2021, Max-Planck-Institut für Eisenforschung GmbH " \ | ||
"- Computational Materials Design (CM) Department" | ||
__version__ = "1.0" | ||
__maintainer__ = "Sam Waseda" | ||
__email__ = "[email protected]" | ||
__status__ = "development" | ||
__date__ = "Aug 21, 2021" | ||
|
||
|
||
class Eshelby: | ||
""" | ||
Anisotropic elasticity theory for dislocations described by | ||
[Eshelby](https://doi.org/10.1016/0001-6160(53)90099-6). | ||
All notations follow the original paper. | ||
""" | ||
def __init__(self, elastic_tensor, burgers_vector): | ||
self.elastic_tensor = elastic_tensor | ||
self.burgers_vector = burgers_vector | ||
self.fit_range = np.linspace(0, 1, 10) | ||
self._p = None | ||
self._Ak = None | ||
self._D = None | ||
|
||
def _get_pmat(self, x): | ||
return ( | ||
self.elastic_tensor[:, 0, :, 0] | ||
+ np.einsum( | ||
'...,ij->...ij', x, self.elastic_tensor[:, 0, :, 1]+self.elastic_tensor[:, 1, :, 0] | ||
) | ||
+ np.einsum('...,ij->...ij', x**2, self.elastic_tensor[:, 1, :, 1]) | ||
) | ||
|
||
@property | ||
def p(self): | ||
if self._p is None: | ||
coeff = np.polyfit(self.fit_range, np.linalg.det(self._get_pmat(self.fit_range)), 6) | ||
self._p = np.roots(coeff) | ||
self._p = self._p[np.imag(self._p)>0] | ||
return self._p | ||
|
||
@property | ||
def Ak(self): | ||
if self._Ak is None: | ||
self._Ak = [] | ||
for mat in self._get_pmat(self.p): | ||
values, vectors = np.linalg.eig(mat.T) | ||
self._Ak.append(vectors.T[np.absolute(values).argmin()]) | ||
self._Ak = np.array(self._Ak) | ||
return self._Ak | ||
|
||
@property | ||
def D(self): | ||
if self._D is None: | ||
F = np.einsum('n,ij->nij', self.p, self.elastic_tensor[:, 1, :, 1]) | ||
F += self.elastic_tensor[:, 1, :, 0] | ||
F = np.einsum('nik,nk->ni', F, self.Ak) | ||
F = np.concatenate((F.T, self.Ak.T), axis=0) | ||
F = np.concatenate((np.real(F), -np.imag(F)), axis=-1) | ||
self._D = np.linalg.solve(F, np.concatenate((np.zeros(3), self.burgers_vector))) | ||
self._D = self._D[:3]+1j*self._D[3:] | ||
return self._D | ||
|
||
@property | ||
def dzdx(self): | ||
return np.stack((np.ones_like(self.p), self.p, np.zeros_like(self.p)), axis=-1) | ||
|
||
def _get_z(self, positions): | ||
z = np.stack((np.ones_like(self.p), self.p), axis=-1) | ||
return np.einsum('nk,...k->...n', z, np.asarray(positions)[..., :2]) | ||
|
||
def get_displacement(self, positions): | ||
""" | ||
Displacement vectors | ||
Args: | ||
positions ((n,3)-array): Positions for which the displacements are to be calculated | ||
Returns: | ||
((n,3)-array): Displacement vectors | ||
""" | ||
return np.imag( | ||
np.einsum('nk,n,...n->...k', self.Ak, self.D, np.log(self._get_z(positions))) | ||
)/(2*np.pi) | ||
|
||
def get_strain(self, positions): | ||
""" | ||
Strain tensors | ||
Args: | ||
positions ((n,3)-array): Positions for which the strains are to be calculated | ||
Returns: | ||
((n,3,3)-array): Strain tensors | ||
""" | ||
strain = np.imag( | ||
np.einsum('ni,n,...n,nj->...ij', self.Ak, self.D, 1/self._get_z(positions), self.dzdx) | ||
) | ||
strain = strain+np.einsum('...ij->...ji', strain) | ||
return strain/4/np.pi |
Oops, something went wrong.