Skip to content

Latest commit

 

History

History
 
 

llama

LLaMA

This document shows how to build and run a LLaMA model in TensorRT-LLM on both single GPU, single node multi-GPU and multi-node multi-GPU.

Overview

The TensorRT-LLM LLaMA implementation can be found in tensorrt_llm/models/llama/model.py. The TensorRT-LLM LLaMA example code is located in examples/llama. There are three main files in that folder::

Support Matrix

  • FP16
  • FP8
  • INT8 & INT4 Weight-Only
  • FP8 KV CACHE
  • Tensor Parallel
  • STRONGLY TYPED

Usage

The TensorRT-LLM LLaMA example code locates at examples/llama. It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference.

Build TensorRT engine(s)

Need to prepare the HF LLaMA checkpoint first by following the guides here https://huggingface.co/docs/transformers/main/en/model_doc/llama.

TensorRT-LLM LLaMA builds TensorRT engine(s) from HF checkpoint. If no checkpoint directory is specified, TensorRT-LLM will build engine(s) with dummy weights.

Normally build.py only requires single GPU, but if you've already got all the GPUs needed while inferencing, you could enable parallelly building to make the engine building process faster by adding --parallel_build argument. Please note that currently parallel_build feature only supports single node.

Here're some examples:

# Build a single-GPU float16 engine from HF weights.
# use_gpt_attention_plugin is necessary in LLaMA.
# Try use_gemm_plugin to prevent accuracy issue.
# It is recommend to use --remove_input_padding along with --use_gpt_attention_plugin for better performance

# Build the LLaMA 7B model using a single GPU and FP16.
python build.py --model_dir ./tmp/llama/7B/ \
                --dtype float16 \
                --remove_input_padding \
                --use_gpt_attention_plugin float16 \
                --enable_context_fmha \
                --use_gemm_plugin float16 \
                --output_dir ./tmp/llama/7B/trt_engines/fp16/1-gpu/

# Build the LLaMA 7B model using a single GPU and BF16.
python build.py --model_dir ./tmp/llama/7B/ \
                --dtype bfloat16 \
                --remove_input_padding \
                --use_gpt_attention_plugin bfloat16 \
                --enable_context_fmha \
                --use_gemm_plugin bfloat16 \
                --output_dir ./tmp/llama/7B/trt_engines/bf16/1-gpu/

# Build the LLaMA 7B model using a single GPU and apply INT8 weight-only quantization.
python build.py --model_dir ./tmp/llama/7B/ \
                --dtype float16 \
                --remove_input_padding \
                --use_gpt_attention_plugin float16 \
                --enable_context_fmha \
                --use_gemm_plugin float16 \
                --use_weight_only \
                --output_dir ./tmp/llama/7B/trt_engines/weight_only/1-gpu/

# Build LLaMA 7B using 2-way tensor parallelism.
python build.py --model_dir ./tmp/llama/7B/ \
                --dtype float16 \
                --remove_input_padding \
                --use_gpt_attention_plugin float16 \
                --enable_context_fmha \
                --use_gemm_plugin float16 \
                --output_dir ./tmp/llama/7B/trt_engines/fp16/2-gpu/ \
                --world_size 2 \
                --tp_size 2

# Build LLaMA 7B using 2-way tensor parallelism and 2-way pipeline parallelism.
python build.py --model_dir ./tmp/llama/7B/ \
                --dtype float16 \
                --remove_input_padding \
                --use_gpt_attention_plugin float16 \
                --enable_context_fmha \
                --use_gemm_plugin float16 \
                --output_dir ./tmp/llama/7B/trt_engines/fp16/2-gpu/ \
                --world_size 4 \
                --tp_size 2 \
                --pp_size 2

# Build LLaMA 30B using 2-way tensor parallelism.
python build.py --model_dir ./tmp/llama/30B/hf/ \
                --dtype float16 \
                --remove_input_padding \
                --use_gpt_attention_plugin float16 \
                --enable_context_fmha \
                --use_gemm_plugin float16 \
                --output_dir ./tmp/llama/30B/trt_engines/fp16/2-gpu/ \
                --world_size 2 \
                --tp_size 2

LLaMA v2 Updates

The LLaMA v2 models with 7B and 13B are compatible with the LLaMA v1 implementation. The above commands still work.

For LLaMA v2 70B, there is a restriction on tensor parallelism that the number of KV heads must be divisible by the number of GPUs. For example, since the 70B model has 8 KV heads, you can run it with 2, 4 or 8 GPUs (1 GPU as well for FP8).

# Build LLaMA 70B using 8-way tensor parallelism.
python build.py --model_dir ./tmp/llama/70B/hf/ \
                --dtype float16 \
                --remove_input_padding \
                --use_gpt_attention_plugin float16 \
                --enable_context_fmha \
                --use_gemm_plugin float16 \
                --output_dir ./tmp/llama/70B/trt_engines/fp16/8-gpu/ \
                --world_size 8 \
                --tp_size 8

# Build LLaMA 70B using 4-way tensor parallelism and 2-way pipeline parallelism.
python build.py --model_dir ./tmp/llama/70B/hf/ \
                --dtype float16 \
                --remove_input_padding \
                --use_gpt_attention_plugin float16 \
                --enable_context_fmha \
                --use_gemm_plugin float16 \
                --output_dir ./tmp/llama/70B/trt_engines/fp16/8-gpu/ \
                --world_size 8 \
                --tp_size 4 \
                --pp_size 2


# Build LLaMA 70B TP=8 using Meta checkpoints directly.
python build.py --meta_ckpt_dir ./tmp/llama/70B \
                --dtype float16 \
                --remove_input_padding \
                --use_gpt_attention_plugin float16 \
                --enable_context_fmha \
                --use_gemm_plugin float16 \
                --output_dir ./tmp/llama/70B/trt_engines/fp16/8-gpu/ \
                --world_size 8 \
                --tp_size 8

Same instructions can be applied to fine-tuned versions of the LLaMA v2 models (e.g. 7Bf or llama-2-7b-chat).

INT8 weight only + INT8 KV cache

For INT8 KV cache, hf_llama_convert.py features a --calibrate-kv-cache, -kv option. Setting -kv will calibrate the model, and then export the scaling factors needed for INT8 KV cache inference.

Example:

python3 hf_llama_convert.py -i /llama-models/llama-7b-hf -o /llama/smooth_llama_7B/int8_kv_cache/ --calibrate-kv-cache -t fp16

build.py add new options for the support of INT8 KV cache.

--int8_kv_cache is the command-line option to enable INT8 KV cache.

In addition, it could be combined with INT8 weight-only quantization, as follows:

Examples of INT8 weight-only quantization + INT8 KV cache

# Build model with both INT8 weight-only and INT8 KV cache enabled
python build.py --ft_model_dir=/llama/smooth_llama_7B/int8_kv_cache/1-gpu/ \
                --dtype float16 \
                --use_gpt_attention_plugin float16 \
                --use_gemm_plugin float16 \
                --output_dir ./tmp/llama/7B/trt_engines/int8_kv_cache_weight_only/1-gpu \
                --int8_kv_cache \
                --use_weight_only

Test with summarize.py:

python summarize.py --test_trt_llm \
                    --hf_model_location /llama-models/llama-7b-hf \
                    --data_type fp16 \
                    --engine_dir ./tmp/llama/7B/trt_engines/int8_kv_cache_weight_only/1-gpu \
                    --test_hf

SmoothQuant

The smoothquant supports both LLaMA v1 and LLaMA v2. Unlike the FP16 build where the HF weights are processed and loaded into the TensorRT-LLM directly, the SmoothQuant needs to load INT8 weights which should be pre-processed before building an engine.

Example:

python3 hf_llama_convert.py -i /llama-models/llama-7b-hf -o /llama/smooth_llama_7B/sq0.8/ -sq 0.8 --tensor-parallelism 1 --storage-type fp16

build.py add new options for the support of INT8 inference of SmoothQuant models.

--use_smooth_quant is the starting point of INT8 inference. By default, it will run the model in the per-tensor mode.

Then, you can add any combination of --per-token and --per-channel to get the corresponding behaviors.

Examples of build invocations:

# Build model for SmoothQuant in the _per_tensor_ mode.
python3 build.py --ft_model_dir=/llama/smooth_llama_7B/sq0.8/1-gpu/ \
                 --use_smooth_quant

# Build model for SmoothQuant in the _per_token_ + _per_channel_ mode
python3 build.py --ft_model_dir=/llama/smooth_llama_7B/sq0.8/1-gpu/ \
                 --use_smooth_quant \
                 --per_token \
                 --per_channel

Note we use --ft_model_dir instead of --model_dir and --meta_ckpt_dir since SmoothQuant model needs INT8 weights and various scales from the binary files.

FP8 Post-Training Quantization

The examples below uses the NVIDIA AMMO (AlgorithMic Model Optimization) toolkit for the model quantization process.

First make sure AMMO toolkit is installed (see examples/quantization/README.md)

After successfully running the script, the output should be in .npz format, e.g. quantized_fp8/llama_tp_1_rank0.npz, where FP8 scaling factors are stored.

# Quantize HF LLaMA 70B into FP8 and export a single-rank checkpoint
python quantize.py --model_dir ./tmp/llama/70B \
                   --dtype float16 \
                   --qformat fp8 \
                   --export_path ./quantized_fp8 \
                   --calib_size 512 \

# Build LLaMA 70B TP=2 using original HF checkpoint + PTQ scaling factors from the single-rank checkpoint
python build.py --model_dir ./tmp/llama/70B \
                --quantized_fp8_model_path ./quantized_fp8/llama_tp1_rank0.npz \
                --dtype float16 \
                --use_gpt_attention_plugin float16 \
                --use_gemm_plugin float16 \
                --output_dir ./tmp/llama/70B/trt_engines/fp8/2-gpu/ \
                --remove_input_padding \
                --enable_fp8 \
                --fp8_kv_cache \
                --world_size 2 \
                --tp_size 2

Groupwise quantization (AWQ/GPTQ)

One can enable AWQ/GPTQ INT4 weight only quantization with these options when building engine with build.py:

  • --use_weight_only enables weight only GEMMs in the network.
  • --per_group enable groupwise weight only quantization, for GPT-J example, we support AWQ with the group size default as 128.
  • --weight_only_precision should specify the weight only quantization format. Supported formats are int4_awq or int4_gptq.
  • --quant_ckpt_path passes the quantized checkpoint to build the engine.

AWQ/GPTQ examples below involves 2 steps:

  1. Weight quantization
  2. Build TRT-LLM engine
AWQ
  1. Weight quantization:

    NVIDIA AMMO toolkit is used for AWQ weight quantization. Please see examples/quantization/README.md for AMMO installation instructions.

    # Quantize HF LLaMA 7B checkpoint into INT4 AWQ format
    python quantize.py --model_dir ./tmp/llama/7B \
                    --dtype float16 \
                    --qformat int4_awq \
                    --export_path ./llama-7b-4bit-gs128-awq.pt \
                    --calib_size 32

    The quantized model checkpoint is saved to path ./llama-7b-4bit-gs128-awq.pt for future TRT-LLM engine build.

  2. Build TRT-LLM engine:

    python build.py --model_dir ./tmp/llama/7B/ \
                    --quant_ckpt_path ./llama-7b-4bit-gs128-awq.pt \
                    --dtype float16 \
                    --remove_input_padding \
                    --use_gpt_attention_plugin float16 \
                    --enable_context_fmha \
                    --use_gemm_plugin float16 \
                    --use_weight_only \
                    --weight_only_precision int4_awq \
                    --per_group \
                    --output_dir ./tmp/llama/7B/trt_engines/int4_AWQ/1-gpu/
GPTQ

To run the GPTQ LLaMa example, the following steps are required:

  1. Weight quantization:

    Quantized weights for GPTQ are generated using GPTQ-for-LLaMa as follow:

    git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git
    cd GPTQ-for-LLaMa
    pip install -r requirements.txt
    
    # Quantize weights into INT4 and save as safetensors
    # Quantized weight with parameter "--act-order" is not supported in TRT-LLM
    python llama.py ./tmp/llama/7B/ c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors ./llama-7b-4bit-gs128.safetensors

    Let us build the TRT-LLM engine with the saved ./llama-7b-4bit-gs128.safetensors.

  2. Build TRT-LLM engine:

    # Build the LLaMA 7B model using 2-way tensor parallelism and apply INT4 GPTQ quantization.
    # Compressed checkpoint safetensors are generated seperately from GPTQ.
    python build.py --model_dir ./tmp/llama/7B/ \
                    --quant_ckpt_path ./llama-7b-4bit-gs128.safetensors \
                    --dtype float16 \
                    --remove_input_padding \
                    --use_gpt_attention_plugin float16 \
                    --enable_context_fmha \
                    --use_gemm_plugin float16 \
                    --use_weight_only \
                    --weight_only_precision int4_gptq \
                    --per_group \
                    --world_size 2 \
                    --tp_size 2 \
                    --output_dir ./tmp/llama/7B/trt_engines/int4_GPTQ/2-gpu/

Run

To run a TensorRT-LLM LLaMA model using the engines generated by build.py

# With fp16 inference
python3 run.py --max_output_len=50 \
               --tokenizer_dir ./tmp/llama/7B/ \
               --engine_dir=./tmp/llama/7B/trt_engines/fp16/1-gpu/

# With bf16 inference
python3 run.py --max_output_len=50 \
               --tokenizer_dir ./tmp/llama/7B/ \
               --engine_dir=./tmp/llama/7B/trt_engines/bf16/1-gpu/

Summarization using the LLaMA model

# Run summarization using the LLaMA 7B model in FP16.
python summarize.py --test_trt_llm \
                    --hf_model_location ./tmp/llama/7B/ \
                    --data_type fp16 \
                    --engine_dir ./tmp/llama/7B/trt_engines/fp16/1-gpu/

# Run summarization using the LLaMA 7B model quantized to INT8.
python summarize.py --test_trt_llm \
                    --hf_model_location ./tmp/llama/7B/ \
                    --data_type fp16 \
                    --engine_dir ./tmp/llama/7B/trt_engines/weight_only/1-gpu/

# Run summarization using the LLaMA 7B model in FP16 using two GPUs.
mpirun -n 2 --allow-run-as-root \
    python summarize.py --test_trt_llm \
                        --hf_model_location ./tmp/llama/7B/ \
                        --data_type fp16 \
                        --engine_dir ./tmp/llama/7B/trt_engines/fp16/2-gpu/

# Run summarization using the LLaMA 30B model in FP16 using two GPUs.
mpirun -n 2 --allow-run-as-root \
    python summarize.py --test_trt_llm \
                        --hf_model_location ./tmp/llama/30B/ \
                        --data_type fp16 \
                        --engine_dir ./tmp/llama/30B/trt_engines/fp16/2-gpu/

Running CodeLlama

Those examples can be used to build and run the CodeLlama models. All 7b, 13b, and 34b sizes and variants are supported.

There are a couple of differences in CodeLlama in comparison to LLaMA v1/v2 models: rotary_base (theta=1000000.0f) and vocabulary size (32016 (1)).

(1): Only applicable to 7b and 13b model sizes. 34b model variants use 32000.

Build

Use the following command to build CodeLlama-7b-Instruct:

python build.py --meta_ckpt_dir ./CodeLlama-7b-Instruct/ --dtype float16 \
    --remove_input_padding --use_gpt_attention_plugin float16 --use_gemm_plugin float16 \
    --enable_context_fmha --output_dir codellama_7b --rotary_base 1000000 --vocab_size 32016

Use the following command to build CodeLlama-34b-Instruct for 4 GPUs (TP=4):

python build.py --meta_ckpt_dir ./CodeLlama-34b-Instruct/ --dtype float16 \
    --remove_input_padding --use_gpt_attention_plugin float16 --use_gemm_plugin float16 --use_rmsnorm_plugin float16 \
    --enable_context_fmha --output_dir codellama_34b --rotary_base 1000000 --vocab_size 32000 --world_size 4 --tp_size 4

NOTE: CodeLlama uses the max_position_embeddings of 16K. To build the engine for running similarly long input/output, you need to specify that during build.

Use --max_input_len and --max_output_len (which defaults to 2048 and 512, respectively) according to your use case, e.g.:

python build.py --meta_ckpt_dir ./CodeLlama-34b-Instruct/ --dtype float16 \
    --remove_input_padding --use_gpt_attention_plugin float16 --use_gemm_plugin float16 --use_rmsnorm_plugin float16 \
    --output_dir codellama_34b --rotary_base 1000000 --vocab_size 32000 --world_size 8 --tp_size 8 --parallel_build \
    --enable_context_fmha --use_parallel_embedding --max_input_len 15360 --max_output_len 1024 --max_batch_size 4

Run

Use the following command to run the 7b engine from above:

python run.py --max_output_len=40 --tokenizer_dir . --engine_dir codellama_7b --input_text "In Bash, how do I list all text files?"

Use the following command to run the 34b engine with long input/output from above:

mpirun -n 8 --allow-run-as-root \
    python run.py --max_output_len=160 --tokenizer_dir ./CodeLlama-34b-Instruct \
    --engine_dir codellama_34b --input_text "In python, write a function for binary searching an element in an integer array."