Skip to content
This repository has been archived by the owner on Oct 31, 2023. It is now read-only.

facebookresearch/unlikelihood_training

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural Text deGeneration with Unlikelihood Training

PyTorch implementation of the paper:

Neural Text Generation with Unlikelihood Training
Sean Welleck*, Ilia Kulikov*, Stephen Roller, Emily Dinan, Kyunghyun Cho, Jason Weston
*Equal contribution. The order was decided by a coin flip.

We present code for training models described in the paper, as well as pre-trained models. The code includes:

  • An implementation of unlikelihood training, fine-tuning, and evaluation for fairseq.
  • A script for fine-tuning a GPT-2 model from pytorch-transformers with the unlikelihood sequence loss.
Table of Contents
Setup
Training
Evaluation
Finetuning GPT-2

Please cite our work if you found the resources in this repository useful:

@misc{welleck2019neural,
    title={Neural Text Generation with Unlikelihood Training},
    author={Sean Welleck and Ilia Kulikov and Stephen Roller and Emily Dinan and Kyunghyun Cho and Jason Weston},
    year={2019},
    eprint={1908.04319},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Setup

Dependencies

The implementation is a custom fairseq module. Download and install fairseq:

git clone https://github.com/pytorch/fairseq.git
cd fairseq
git checkout 2b68e91f231a2b7997664e1418f30b808d889963
pip install --editable .

Install other dependencies:

pip install nltk
pip install pandas
pip install pytorch-transformers   # (optional); for GPT-2 fine-tuning
pip install tensorflow=1.14
pip install tensorboardX           # (optional); for tensorboard logs
pip install torch==1.4.0           # overwriting the latest version of pytorch, as installed by fairseq

'Installing' the unlikelihood module

Copy the custom directory in this repo into the fairseq repo that you downloaded above:

export FAIRSEQ_DIR=/path/to/fairseq
export UNLIKELIHOOD_DIR=/path/to/unlikelihood_training

cp -r $UNLIKELIHOOD_DIR/custom $FAIRSEQ_DIR/fairseq

Now ls $FAIRSEQ_DIR/fairseq should resemble:

binarizer.py
...
criterions
custom
data
...

Next Steps

We recommend performing the following steps from the fairseq repo's base directory:

cd $FAIRSEQ_DIR

Dataset

Download the binarized wikitext-103 dataset (160MB, install wget if needed):

wget https://dl.fbaipublicfiles.com/unlikelihood/wikitext-103_v0.tar.gz

Unpack the dataset (440MB):

tar xzvf wikitext-103_v0.tar.gz

This command unpacks the dataset into a data-bin folder in the current directory.

Create a checkpoint folder

mkdir checkpoint

Download pre-trained models

*This step is not necessary for training a model from scratch.

We provide all fairseq models used in the paper. Download the model archive (warning: large (16gb) file):

wget https://dl.fbaipublicfiles.com/unlikelihood/checkpoints_v0.tar.gz

Unpack the model checkpoints from the archive:

tar xzvf checkpoints_v0.tar.gz

Training

*We tested these scripts using Tesla V100 32GB gpu(s) in both single and multi-gpu (8) settings. If you get OOM errors, try decreasing the batch size (--max-tokens,--tokens-per-sample). Otherwise, the hyper-parameters used here are similar to the example LM training code in fairseq.

The commands below assume you are in the $FAIRSEQ_DIR directory.

Baseline (MLE) model

python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
    --user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
    --fp16 --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 \
    --lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 \
    --optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
    --skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 10000 \
    --keep-interval-updates 2 --no-progress-bar --log-interval 100 \
    --criterion cross_entropy_wcustom_metrics \
    --save-dir ./checkpoint/baseline_model \
    --tensorboard-logdir ./checkpoint/baseline_model

Train a token-level unlikelihood model

python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
    --user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
    --fp16 --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 \
    --lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 \
    --optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
    --skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 10000 \
    --keep-interval-updates 2 --no-progress-bar --log-interval 100 \
    --criterion candidate_penalty_cross_entropy --rank-alpha 1.0 \
    --save-dir ./checkpoint/token_level_model \
    --tensorboard-logdir ./checkpoint/token_level_model

Sequence-level fine tuning

For sequence-level fine tuning you need an initial checkpoint (via --restore-file). You can use your own checkpoints, or a provided checkpoint as shown below.

Fine-tuning the baseline model

python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
    --user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
    --fp16 --max-update 1500 --max-lr 1.0e-2 --t-mult 2 --lr-period-updates 270000 \
    --lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 0 --warmup-init-lr 1e-07 --min-lr 1e-09 \
    --optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
    --skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 100 \
    --keep-interval-updates 2 --no-progress-bar --log-interval 10 \
    --rank-alpha 1.0 --sequence-level-train-rate 0.5 \
    --reset-lr-scheduler --reset-optimizer --reset-meters \
    --compute-metrics-interval 1 --restore-file ./public_checkpoints/mle_baseline/checkpoint_best.pt \
    --criterion cross_entropy_wcustom_metrics \
    --sequence-prefix-length 50 --sequence-completion-length 100 \
    --sequence-ngram-n 4 \
    --save-dir ./checkpoint/seq_level_on_baseline \
    --tensorboard-logdir ./checkpoint/seq_level_on_baseline

Fine-tuning the token-level unlikelihood model

python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
    --user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
    --fp16 --max-update 1500 --max-lr 1.0e-2 --t-mult 2 --lr-period-updates 270000 \
    --lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 0 --warmup-init-lr 1e-07 --min-lr 1e-09 \
    --optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
    --skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 100 \
    --keep-interval-updates 2 --no-progress-bar --log-interval 10 \
    --rank-alpha 1.0 --sequence-level-train-rate 0.5 \
    --reset-lr-scheduler --reset-optimizer --reset-meters \
    --compute-metrics-interval 1 --restore-file ./public_checkpoints/token_level_ul/checkpoint_best.pt \
    --criterion candidate_penalty_cross_entropy \
    --sequence-prefix-length 50 --sequence-completion-length 100 \
    --sequence-ngram-n 4 \
    --save-dir ./checkpoint/seq_level_on_token_level \
    --tensorboard-logdir ./checkpoint/seq_level_on_token_level

Evaluation

A single script (custom/evaluation.py) performs sequence-level and token level evaluation. For the sequence-level evaluation one can choose greedy search, beam search, top-k, or top-p (nucleus) sampling.

Each evaluation run produces the following files (in the --save-path directory):

  • completions__{params}.txt: prefixes with corresponding completions
  • single_token_predictions__{params}.txt: next-token greedy predictions (i.e. given human context)
  • metrics__{params}.pkl: metrics extracted on the token-level (e.g. PPL, loss, acc, rep, etc.)
  • targets__{params}.txt: reference sequences

Example command to run evaluation using the pretrained baseline model:

python -u ./fairseq/custom/evaluation.py \
    --batch-size-single-prediction 1536 --batch-size-completion 48 \
    --data-prefix-length 50 --completion-length 100 \
    --save-path ./public_checkpoints/ --ckpt all \
    --model-path ./public_checkpoints/mle_baseline \
    --data-dir ./data-bin/wikitext-103 \
    --base-dir ./

Evaluation from the paper

We share evaluation outputs for models used in our paper. To download and unpack the outputs:

wget https://dl.fbaipublicfiles.com/unlikelihood/eval_public_v0.tar.gz
tar xzvf eval_public_v0.tar.gz

To post-process evaluation output (requires pandas (pip install pandas)):

python fairseq/custom/report_metrics.py \
    --eval-dir ./eval_public \
    --model-names mle_baseline token_level_ul seq_level_ul_mle seq_level_ul_token_level_ul

This yields the following output:

     model_name beam size beam block topk topp  split  seq-rep-1  seq-rep-4  uniq-seq     ppl    acc    rep   wrep   uniq
0  mle_baseline         1          0   50  0.0  valid      0.381      0.016     21396  24.592  0.401  0.619  0.346  11654
1  mle_baseline         1          0    1  0.0  valid      0.690      0.429     10629  24.592  0.401  0.619  0.346  11654
2  mle_baseline         1          0   50  0.0   test      0.382      0.016     22670  25.639  0.395  0.627  0.352  11849
3  mle_baseline         1          0    1  0.0   test      0.697      0.442     10845  25.639  0.395  0.627  0.352  11849
4  mle_baseline         1          0    1  0.9  valid      0.368      0.014     25574  24.592  0.401  0.619  0.346  11654
5  mle_baseline         1          0    1  0.9   test      0.370      0.016     27275  25.639  0.395  0.627  0.352  11849
6  mle_baseline        10          0    1  0.0  valid      0.726      0.495      9470  24.592  0.401  0.619  0.346  11654
7  mle_baseline        10          0    1  0.0   test      0.740      0.523      9530  25.639  0.395  0.627  0.352  11849
8  mle_baseline        10          4    1  0.0  valid      0.505      0.000     13350  24.592  0.401  0.619  0.346  11654
9  mle_baseline        10          4    1  0.0   test      0.511      0.000     14158  25.639  0.395  0.627  0.352  11849



MODEL: token_level_ul

       model_name beam size beam block topk topp  split  seq-rep-1  seq-rep-4  uniq-seq     ppl    acc    rep   wrep   uniq
0  token_level_ul         1          0   50  0.0  valid      0.303      0.007     22861  25.624  0.396  0.569  0.305  12462
1  token_level_ul         1          0    1  0.0  valid      0.584      0.274     12630  25.624  0.396  0.569  0.305  12462
2  token_level_ul         1          0   50  0.0   test      0.304      0.007     24476  26.910  0.390  0.577  0.311  12728
3  token_level_ul         1          0    1  0.0   test      0.586      0.283     13195  26.910  0.390  0.577  0.311  12728
4  token_level_ul         1          0    1  0.9  valid      0.279      0.005     28859  25.624  0.396  0.569  0.305  12462
5  token_level_ul         1          0    1  0.9   test      0.280      0.005     31325  26.910  0.390  0.577  0.311  12728
6  token_level_ul        10          0    1  0.0  valid      0.615      0.327     11225  25.624  0.396  0.569  0.305  12462
7  token_level_ul        10          0    1  0.0   test      0.619      0.336     11753  26.910  0.390  0.577  0.311  12728
8  token_level_ul        10          4    1  0.0  valid      0.433      0.000     14622  25.624  0.396  0.569  0.305  12462
9  token_level_ul        10          4    1  0.0   test      0.437      0.000     15386  26.910  0.390  0.577  0.311  12728



MODEL: seq_level_ul_mle

         model_name beam size beam block topk topp  split  seq-rep-1  seq-rep-4  uniq-seq     ppl    acc    rep   wrep   uniq
0  seq_level_ul_mle         1          0   50  0.0  valid      0.305  1.000e-03     23169  24.284  0.406  0.603  0.329  12355
1  seq_level_ul_mle         1          0   50  0.0   test      0.307  1.000e-03     24946  25.416  0.399  0.609  0.335  12779
2  seq_level_ul_mle         1          0    1  0.0  valid      0.507  1.306e-01     12663  24.284  0.406  0.603  0.329  12355
3  seq_level_ul_mle         1          0    1  0.0   test      0.514  1.369e-01     13144  25.416  0.399  0.609  0.335  12779
4  seq_level_ul_mle         1          0    1  0.9  valid      0.290  6.000e-04     31012  24.284  0.406  0.603  0.329  12355
5  seq_level_ul_mle         1          0    1  0.9   test      0.294  9.000e-04     33926  25.416  0.399  0.609  0.335  12779
6  seq_level_ul_mle        10          0    1  0.0  valid      0.374  1.830e-02     16817  24.284  0.406  0.603  0.329  12355
7  seq_level_ul_mle        10          0    1  0.0   test      0.376  1.910e-02     18352  25.416  0.399  0.609  0.335  12779
8  seq_level_ul_mle        10          4    1  0.0  valid      0.356  0.000e+00     16898  24.284  0.406  0.603  0.329  12355
9  seq_level_ul_mle        10          4    1  0.0   test      0.358  0.000e+00     18432  25.416  0.399  0.609  0.335  12779



MODEL: seq_level_ul_token_level_ul

                    model_name beam size beam block topk topp  split  seq-rep-1  seq-rep-4  uniq-seq     ppl    acc    rep   wrep   uniq
0  seq_level_ul_token_level_ul         1          0   50  0.0  valid      0.254  5.000e-04     24253  25.375  0.401  0.551  0.287  13375
1  seq_level_ul_token_level_ul         1          0   50  0.0   test      0.257  6.000e-04     25997  26.718  0.395  0.559  0.293  13759
2  seq_level_ul_token_level_ul         1          0    1  0.0  valid      0.428  5.190e-02     14845  25.375  0.401  0.551  0.287  13375
3  seq_level_ul_token_level_ul         1          0    1  0.0   test      0.438  5.850e-02     15428  26.718  0.395  0.559  0.293  13759
4  seq_level_ul_token_level_ul         1          0    1  0.9  valid      0.233  3.000e-04     32011  25.375  0.401  0.551  0.287  13375
5  seq_level_ul_token_level_ul         1          0    1  0.9   test      0.234  3.000e-04     34824  26.718  0.395  0.559  0.293  13759
6  seq_level_ul_token_level_ul        10          0    1  0.0  valid      0.335  1.310e-02     17562  25.375  0.401  0.551  0.287  13375
7  seq_level_ul_token_level_ul        10          0    1  0.0   test      0.338  1.350e-02     19151  26.718  0.395  0.559  0.293  13759
8  seq_level_ul_token_level_ul        10          4    1  0.0  valid      0.322  0.000e+00     17792  25.375  0.401  0.551  0.287  13375
9  seq_level_ul_token_level_ul        10          4    1  0.0   test      0.326  0.000e+00     19439  26.718  0.395  0.559  0.293  13759

Finetuning GPT-2

We also provide a script for sequence-level and maximum-likelihood fine-tuning a GPT-2 model from the pytorch transformers library.

Install (we used version 1.1.0):

pip install pytorch-transformers

We will again assume that you are in the fairseq base directory:

cd $FAIRSEQ_DIR

Download and unpack the BPE-tokenized WikiText:

wget https://dl.fbaipublicfiles.com/unlikelihood/wikitext-103-bpe_v0.tar.gz
tar -xzvf wikitext-103-bpe_v0.tar.gz
mv wikitext-103-bpe_v0 data-bin/

Sequence-level finetuning

python fairseq/custom/gpt2/run_gpt2.py  \
    --data-base ./data-bin/wikitext-103-bpe_v0 \
    --output-dir ./checkpoint/gpt2/seq_tune \
    --eval-split valid \
    --mode train

MLE-tuning

python fairseq/custom/gpt2/run_gpt2.py  \
    --data-base ./data-bin/wikitext-103-bpe_v0 \
    --output-dir ./checkpoint/gpt2/mle_tune \
    --eval-split valid \
    --train-n-steps 20000 \
    --validate-every 1000 \
    --sequence-tune-rate 0.0 \
    --mode train

Sequence-level finetuning after MLE-tuning

python fairseq/custom/gpt2/run_gpt2.py  \
    --data-base ./data-bin/wikitext-103-bpe_v0 \
    --output-dir ./checkpoint/gpt2/seq_mle_tune \
    --eval-split valid \
    --model-load-dir ./checkpoint/gpt2/mle_tune/best \
    --mode train

Evaluation

python fairseq/custom/gpt2/run_gpt2.py  \
    --data-base ./data-bin/wikitext-103-bpe_v0 \
    --output-dir ./checkpoint/gpt2/seq_mle_tune \
    --eval-split valid \
    --model-load-dir ./checkpoint/gpt2/seq_mle_tune \
    --mode eval-both

We used a single Tesla V100 32GB gpu.

License

unlikelihood_training is CC-BY-NC 4.0 licensed, as found in the LICENSE file.

About

Neural Text Generation with Unlikelihood Training

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages