Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

misc(iceberg-export): Include a metric to count number of rows exported (number of rows in filteredRDD) #1726

Merged
merged 1 commit into from
Feb 29, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -79,15 +79,17 @@ class Downsampler(settings: DownsamplerSettings) extends Serializable {
lazy val exportLatency =
Kamon.histogram("export-latency", MeasurementUnit.time.milliseconds).withoutTags()

lazy val numRowsExported = Kamon.counter("num-rows-exported").withoutTags()

/**
* Exports an RDD for a specific export key.
* (1) Create the export destination address from the key.
* (2) Generate all rows to be exported from the argument RDD.
* (3) Filter for only rows relevant to the export key.
* (4) Write the filtered rows to the destination address.
* (1) Create the export destination address from the key.
* (2) Generate all rows to be exported from the argument RDD.
* (3) Filter for only rows relevant to the export key.
* (4) Write the filtered rows to the destination address.
* NOTE: the export schema is required to define a column for each field of an export key.
* E.g. if a key is defined as [foo, bar], then the result rows must contain a column
* for each of "foo" and "bar".
* E.g. if a key is defined as [foo, bar], then the result rows must contain a column
* for each of "foo" and "bar".
*/
private def exportForKey(rdd: RDD[Seq[PagedReadablePartition]],
exportKey: Seq[String],
Expand All @@ -101,9 +103,12 @@ class Downsampler(settings: DownsamplerSettings) extends Serializable {
index.get
})

val filteredRowRdd = rdd.flatMap(batchExporter.getExportRows(_, exportTableConfig)).filter{ row =>
val filteredRowRdd = rdd.flatMap(batchExporter.getExportRows(_, exportTableConfig)).filter { row =>
val rowKey = columnKeyIndices.map(row.get(_).toString)
rowKey == exportKey
}.map { row =>
numRowsExported.increment()
row
}

// write filteredRowRdd to iceberg table
Expand All @@ -121,10 +126,10 @@ class Downsampler(settings: DownsamplerSettings) extends Serializable {
def run(sparkConf: SparkConf): SparkSession = {

val spark = Class.forName(settings.sparkSessionFactoryClass)
.getDeclaredConstructor()
.newInstance()
.asInstanceOf[SparkSessionFactory]
.make(sparkConf)
.getDeclaredConstructor()
.newInstance()
.asInstanceOf[SparkSessionFactory]
.make(sparkConf)

DownsamplerContext.dsLogger.info(s"Spark Job Properties: ${spark.sparkContext.getConf.toDebugString}")

Expand All @@ -134,11 +139,11 @@ class Downsampler(settings: DownsamplerSettings) extends Serializable {
// Specified during reruns for downsampling old data
val userTimeInPeriod: Long = spark.sparkContext.getConf
.getOption("spark.filodb.downsampler.userTimeOverride") match {
// by default assume a time in the previous downsample period
case None => System.currentTimeMillis() - settings.downsampleChunkDuration
// examples: 2019-10-20T12:34:56Z or 2019-10-20T12:34:56-08:00
case Some(str) => Instant.from(DateTimeFormatter.ISO_OFFSET_DATE_TIME.parse(str)).toEpochMilli()
}
// by default assume a time in the previous downsample period
case None => System.currentTimeMillis() - settings.downsampleChunkDuration
// examples: 2019-10-20T12:34:56Z or 2019-10-20T12:34:56-08:00
case Some(str) => Instant.from(DateTimeFormatter.ISO_OFFSET_DATE_TIME.parse(str)).toEpochMilli()
}

val userTimeStart: Long = (userTimeInPeriod / settings.downsampleChunkDuration) * settings.downsampleChunkDuration
val userTimeEndExclusive: Long = userTimeStart + settings.downsampleChunkDuration
Expand Down Expand Up @@ -185,7 +190,7 @@ class Downsampler(settings: DownsamplerSettings) extends Serializable {
Kamon.init()
KamonShutdownHook.registerShutdownHook()
// convert each RawPartData to a ReadablePartition
rawPartsBatch.map{ rawPart =>
rawPartsBatch.map { rawPart =>
val rawSchemaId = RecordSchema.schemaID(rawPart.partitionKey, UnsafeUtils.arayOffset)
val rawPartSchema = batchDownsampler.schemas(rawSchemaId)
new PagedReadablePartition(rawPartSchema, shard = 0, partID = 0, partData = rawPart, minResolutionMs = 1)
Expand All @@ -195,7 +200,7 @@ class Downsampler(settings: DownsamplerSettings) extends Serializable {
val rddWithDs = if (settings.chunkDownsamplerIsEnabled) {
// Downsample the data.
// NOTE: this step returns each row of the RDD as-is; it does NOT return downsampled data.
rdd.map{ part =>
rdd.map { part =>
batchDownsampler.downsampleBatch(part)
part
}
Expand All @@ -211,8 +216,10 @@ class Downsampler(settings: DownsamplerSettings) extends Serializable {
val firstExportTaskWithDs = Seq(() =>
exportForKey(rddWithDs, exportKeyToRules.head._1, exportKeyToRules.head._2, batchExporter, spark))
// export all remaining keys without the downsample step
val remainingExportTasksWithoutDs = exportKeyToRules.tail.map{spec => () =>
exportForKey(rdd, spec._1, spec._2, batchExporter, spark)}
val remainingExportTasksWithoutDs = exportKeyToRules.tail.map { spec =>
() =>
exportForKey(rdd, spec._1, spec._2, batchExporter, spark)
}
// create a parallel sequence of tasks
(firstExportTaskWithDs ++ remainingExportTasksWithoutDs).par
}
Expand Down
Loading