-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #59 from flairNLP/whoisjones/doc-tutorial-update
Added experiments for submission
- Loading branch information
Showing
15 changed files
with
1,125 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
import os | ||
from datasets import load_dataset | ||
from haystack.nodes import PromptNode | ||
from ai_dataset_generator import DatasetGenerator, BasePrompt | ||
from ai_dataset_generator.dataset_transformations.token_classification import convert_token_labels_to_spans | ||
|
||
|
||
def run(): | ||
fewshot_dataset = load_dataset("conll2003", split="train") | ||
fewshot_dataset, label_options = convert_token_labels_to_spans( | ||
fewshot_dataset, | ||
"tokens", | ||
"ner_tags", | ||
expanded_label_mapping={ | ||
0: "O", | ||
1: "B-person", | ||
2: "I-person", | ||
3: "B-organization", | ||
4: "I-organization", | ||
5: "B-location", | ||
6: "I-location", | ||
7: "B-miscellaneous", | ||
8: "I-miscellaneous", | ||
} | ||
) | ||
|
||
annotation_dataset = load_dataset("conll2003", split="validation") | ||
annotation_dataset, label_options = convert_token_labels_to_spans( | ||
annotation_dataset, | ||
"tokens", | ||
"ner_tags", | ||
expanded_label_mapping={ | ||
0: "O", | ||
1: "B-person", | ||
2: "I-person", | ||
3: "B-organization", | ||
4: "I-organization", | ||
5: "B-location", | ||
6: "I-location", | ||
7: "B-miscellaneous", | ||
8: "I-miscellaneous", | ||
} | ||
) | ||
|
||
prompt = BasePrompt( | ||
task_description="Extract the following named entities from the text: {}. " | ||
"Your output format must be exactly the same as from the fewshot examples.", | ||
label_options=label_options, | ||
generate_data_for_column="ner_tags", | ||
fewshot_example_columns="tokens", | ||
) | ||
|
||
prompt_node = PromptNode( | ||
model_name_or_path="gpt-3.5-turbo", | ||
api_key=os.environ.get("OPENAI_API_KEY"), | ||
max_length=500, | ||
) | ||
|
||
generator = DatasetGenerator(prompt_node) | ||
generated_dataset = generator.generate( | ||
prompt_template=prompt, | ||
fewshot_dataset=fewshot_dataset, | ||
fewshot_examples_per_class=3, | ||
unlabeled_dataset=annotation_dataset, | ||
max_prompt_calls=len(annotation_dataset), | ||
) | ||
|
||
generated_dataset.push_to_hub("conll-validation-annotated", private=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
from argparse import ArgumentParser | ||
from datasets import load_dataset | ||
from ai_dataset_generator import convert_spans_to_token_labels | ||
from seqeval.metrics import accuracy_score, f1_score | ||
|
||
|
||
def run(args): | ||
id2label = { | ||
0: "O", | ||
1: "B-person", | ||
2: "I-person", | ||
3: "B-organization", | ||
4: "I-organization", | ||
5: "B-location", | ||
6: "I-location", | ||
7: "B-miscellaneous", | ||
8: "I-miscellaneous", | ||
} | ||
dataset = load_dataset(args.corpus, split="train") | ||
dataset = convert_spans_to_token_labels(dataset, "tokens", "ner_tags", id2label=id2label) | ||
original = load_dataset("conll2003", split="validation") | ||
y_pred = [] | ||
y_true = [] | ||
for generated_example, original_example in zip(dataset, original): | ||
if len(generated_example["tokens"]) == len(original_example["tokens"]): | ||
y_pred.append([id2label[tag] for tag in generated_example["ner_tags"]]) | ||
y_true.append([id2label[tag] for tag in original_example["ner_tags"]]) | ||
|
||
print(len(y_pred) / len(dataset)) | ||
print(accuracy_score(y_true, y_pred)) | ||
print(f1_score(y_true, y_pred)) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = ArgumentParser() | ||
parser.add_argument("--corpus", type=str) | ||
arguments = parser.parse_args() | ||
run(arguments) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
import os | ||
from datasets import load_dataset, concatenate_datasets | ||
from haystack.nodes import PromptNode | ||
from ai_dataset_generator import DatasetGenerator, BasePrompt | ||
from ai_dataset_generator.dataset_transformations.text_classification import convert_label_ids_to_texts | ||
|
||
|
||
def run(): | ||
annotation_dataset, label_options = convert_label_ids_to_texts( | ||
load_dataset("glue", "mrpc", split="train"), | ||
"label", | ||
return_label_options=True, | ||
) | ||
fewshot_datasets = [] | ||
for label in range(2): | ||
filtered_ds = load_dataset("glue", "mrpc", split="validation").filter( | ||
lambda x: x["label"] == label) | ||
fewshot_datasets.append(filtered_ds.select(range(6))) | ||
fewshot_dataset = concatenate_datasets(fewshot_datasets).shuffle(seed=42) | ||
|
||
fewshot_dataset = convert_label_ids_to_texts(fewshot_dataset, "label") | ||
|
||
prompt = BasePrompt( | ||
task_description="Given two sentences, determine by means of the fewshot examples whether these sentences are: {}.", | ||
label_options=label_options, | ||
generate_data_for_column="label", | ||
fewshot_example_columns=["sentence1", "sentence2"], | ||
) | ||
|
||
prompt_node = PromptNode( | ||
model_name_or_path="gpt-3.5-turbo", | ||
api_key=os.environ.get("OPENAI_API_KEY"), | ||
max_length=100, | ||
) | ||
|
||
generator = DatasetGenerator(prompt_node) | ||
generated_dataset, original_dataset = generator.generate( | ||
prompt_template=prompt, | ||
fewshot_dataset=fewshot_dataset, | ||
fewshot_examples_per_class=2, | ||
fewshot_label_sampling_strategy="stratified", | ||
unlabeled_dataset=annotation_dataset, | ||
max_prompt_calls=len(annotation_dataset), | ||
return_unlabeled_dataset=True | ||
) | ||
|
||
generated_dataset.push_to_hub("glue_mrpc_annotated_12_fewshot_examples_2_per_prompt_stratified", private=True) | ||
original_dataset.push_to_hub("glue_mrpc_original", private=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
import argparse | ||
import numpy as np | ||
from datasets import load_dataset, ClassLabel | ||
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer, \ | ||
DataCollatorWithPadding | ||
import evaluate | ||
import shutil | ||
|
||
|
||
def run(args): | ||
# iterate over all corpora | ||
for corpus_name in args.corpora: | ||
# iterate over all sizes, -1 means we are taking all examples but at most 10k | ||
for size in [-1, 50, 500, 1000]: | ||
# Average results for corpus and size over 5 seeds | ||
result_avg = [] | ||
for seed in [41, 42, 43, 44, 45]: | ||
# Load the dataset | ||
dataset = load_dataset(corpus_name, split="train").shuffle(seed=seed) | ||
test_split = load_dataset("glue", "mrpc", split="test") | ||
|
||
# preprocess annotated dataset - ensure unified labels (lowercased and no whitespaces) + correct | ||
# ClassLabel feature | ||
if "annotated" in corpus_name: | ||
original_labels = test_split.features["label"].names | ||
|
||
def clean_labels(examples): | ||
examples["label"] = examples["label"].lower() | ||
return examples | ||
|
||
dataset = dataset.map(clean_labels) | ||
|
||
dst_feat = ClassLabel(names=original_labels) | ||
dataset = dataset.map(lambda batch: { | ||
"label": dst_feat.str2int(batch)}, input_columns="label", batched=True) | ||
new_features = dataset.features.copy() | ||
new_features["label"] = dst_feat | ||
dataset = dataset.cast(new_features) | ||
|
||
# Compose final training dataset + gold-labeled test split | ||
if size > 0: | ||
dataset = dataset.select(range(size)) | ||
dataset = dataset.train_test_split(test_size=0.1) | ||
dataset["validation"] = dataset["test"] | ||
dataset["test"] = test_split | ||
num_labels = dataset["train"].features["label"].num_classes | ||
|
||
# Load the BERT tokenizer and model | ||
model_name = "bert-base-uncased" | ||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | ||
|
||
# Preprocessing function | ||
def preprocess_function(examples): | ||
return tokenizer( | ||
examples["sentence1"], | ||
examples["sentence2"], | ||
padding=True, | ||
truncation=True, | ||
return_tensors="pt" | ||
) | ||
|
||
tokenized_dataset = dataset.map(preprocess_function, batched=True) | ||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | ||
accuracy = evaluate.load("accuracy") | ||
|
||
def compute_metrics(eval_pred): | ||
predictions, labels = eval_pred | ||
predictions = np.argmax(predictions, axis=1) | ||
return accuracy.compute(predictions=predictions, references=labels) | ||
|
||
id2label = dict(enumerate(dataset["train"].features["label"].names)) | ||
label2id = {v: k for k, v in id2label.items()} | ||
|
||
# Create model and move to CUDA | ||
model = AutoModelForSequenceClassification.from_pretrained( | ||
model_name, | ||
num_labels=num_labels, | ||
id2label=id2label, | ||
label2id=label2id | ||
).to("cuda") | ||
|
||
# Set number of training epochs depending on dataset size | ||
if size < 0: | ||
num_train_epochs = 5 | ||
elif size == 1000: | ||
num_train_epochs = 10 | ||
else: | ||
num_train_epochs = 20 | ||
|
||
# Make tmp path for storing the model | ||
tmp_path = f"tmp/{corpus_name.replace('/', '-')}-{size}-samples" | ||
|
||
# Training arguments | ||
training_args = TrainingArguments( | ||
output_dir=tmp_path, | ||
learning_rate=2e-5, | ||
per_device_train_batch_size=16, | ||
per_device_eval_batch_size=16, | ||
num_train_epochs=num_train_epochs, | ||
weight_decay=0.01, | ||
save_total_limit=1, | ||
evaluation_strategy="epoch", | ||
push_to_hub=False, | ||
) | ||
|
||
trainer = Trainer( | ||
model=model, | ||
args=training_args, | ||
train_dataset=tokenized_dataset["train"], | ||
eval_dataset=tokenized_dataset["validation"], | ||
tokenizer=tokenizer, | ||
data_collator=data_collator, | ||
compute_metrics=compute_metrics, | ||
) | ||
|
||
trainer.train() | ||
|
||
results = trainer.predict(tokenized_dataset["test"]) | ||
result_avg.append(results.metrics["test_accuracy"] * 100) | ||
|
||
# remove tmp path since we iterate over seeds, corpora and sizes | ||
shutil.rmtree(tmp_path) | ||
|
||
# change -1 for logging to 'all' | ||
if size > 0: | ||
log_size = str(size) | ||
else: | ||
log_size = "all" | ||
|
||
# write results to log file | ||
log_corpus_name = corpus_name.replace("whoisjones/", "") | ||
file = f"{log_corpus_name}-{log_size}-samples" | ||
with open(f"results/{file}.log", "w") as f: | ||
f.write(f"Accuracy: {np.mean(result_avg)}\n") | ||
f.write(f"Standard deviation: {np.std(result_avg)}\n") | ||
|
||
|
||
if __name__ == "__main__": | ||
# Run like 'python snli_train_model.py --corpora hfaccount/generated-model snli | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--corpora", nargs='+') # a list of generated and gold-label corpus | ||
arguments = parser.parse_args() | ||
run(arguments) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import os | ||
from datasets import load_dataset, concatenate_datasets | ||
from haystack.nodes import PromptNode | ||
from ai_dataset_generator import DatasetGenerator, BasePrompt | ||
from ai_dataset_generator.dataset_transformations.text_classification import convert_label_ids_to_texts | ||
|
||
|
||
def run(): | ||
annotation_dataset, label_options = convert_label_ids_to_texts( | ||
load_dataset("snli", split="train").filter(lambda x: x["label"] in [0,1,2]).shuffle(seed=42).select( | ||
range(10000)), | ||
"label", | ||
return_label_options=True, | ||
) | ||
|
||
fewshot_datasets = [] | ||
for label in range(3): | ||
filtered_ds = load_dataset("snli", split="validation").filter(lambda x: x["label"] == label) | ||
fewshot_datasets.append(filtered_ds.select(range(6))) | ||
fewshot_dataset = concatenate_datasets(fewshot_datasets).shuffle(seed=42) | ||
|
||
fewshot_dataset = convert_label_ids_to_texts(fewshot_dataset, "label") | ||
|
||
prompt = BasePrompt( | ||
task_description="Given two sentences, determine by means of the fewshot examples whether these sentence " | ||
"pairs are: {}.", | ||
label_options=label_options, | ||
generate_data_for_column="label", | ||
fewshot_example_columns=["premise", "hypothesis"], | ||
) | ||
|
||
prompt_node = PromptNode( | ||
model_name_or_path="gpt-3.5-turbo", | ||
api_key=os.environ.get("OPENAI_API_KEY"), | ||
max_length=100, | ||
) | ||
|
||
generator = DatasetGenerator(prompt_node) | ||
generated_dataset, original_dataset = generator.generate( | ||
prompt_template=prompt, | ||
fewshot_dataset=fewshot_dataset, | ||
fewshot_examples_per_class=2, | ||
fewshot_label_sampling_strategy="stratified", | ||
unlabeled_dataset=annotation_dataset, | ||
max_prompt_calls=len(annotation_dataset), | ||
return_unlabeled_dataset=True | ||
) | ||
|
||
generated_dataset.push_to_hub("snli_annotated_18_fewshot_examples_2_per_prompt_stratified", private=True) | ||
original_dataset.push_to_hub("snli_original", private=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
run() |
Oops, something went wrong.