-
Notifications
You must be signed in to change notification settings - Fork 89
/
dftregistration_min_max.m
283 lines (259 loc) · 11.2 KB
/
dftregistration_min_max.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
function [output, Greg] = dftregistration_min_max(buf1ft,buf2ft,usfac,min_shift,max_shift,phase_flag)
% function [output Greg] = dftregistration(buf1ft,buf2ft,usfac);
% Efficient subpixel image registration by crosscorrelation. This code
% gives the same precision as the FFT upsampled cross correlation in a
% small fraction of the computation time and with reduced memory
% requirements. It obtains an initial estimate of the crosscorrelation peak
% by an FFT and then refines the shift estimation by upsampling the DFT
% only in a small neighborhood of that estimate by means of a
% matrix-multiply DFT. With this procedure all the image points are used to
% compute the upsampled crosscorrelation.
% Manuel Guizar - Dec 13, 2007
%
% Rewrote all code not authored by either Manuel Guizar or Jim Fienup
% Manuel Guizar - May 13, 2016
%
% Modified by Eftychios A. Pnevmatikakis to include upper bound on possible
% shifts - November 1, 2016
%
% Citation for this algorithm:
% Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup,
% "Efficient subpixel image registration algorithms," Opt. Lett. 33,
% 156-158 (2008).
%
% Inputs
% buf1ft Fourier transform of reference image,
% DC in (1,1) [DO NOT FFTSHIFT]
% buf2ft Fourier transform of image to register,
% DC in (1,1) [DO NOT FFTSHIFT]
% usfac Upsampling factor (integer). Images will be registered to
% within 1/usfac of a pixel. For example usfac = 20 means the
% images will be registered within 1/20 of a pixel. (default = 1)
% max_shift Maximum shift in each dimension (2x1 vector). (default = Inf, no max)
%
% Outputs
% output = [error,diffphase,net_row_shift,net_col_shift]
% error Translation invariant normalized RMS error between f and g
% diffphase Global phase difference between the two images (should be
% zero if images are non-negative).
% net_row_shift net_col_shift Pixel shifts between images
% Greg (Optional) Fourier transform of registered version of buf2ft,
% the global phase difference is compensated for.
%
%
% Copyright (c) 2016, Manuel Guizar Sicairos, James R. Fienup, University of Rochester
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
% * Neither the name of the University of Rochester nor the names
% of its contributors may be used to endorse or promote products derived
% from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
if ~exist('phase_flag','var')
phase_flag = true;
end
if ~exist('usfac','var')
usfac = 1;
end
if ~exist('max_shift','var')
min_shift = -Inf(1,2);
end
if ~exist('max_shift','var')
max_shift = Inf(1,2);
end
if isscalar(min_shift); min_shift = min_shift*[1,1]; end
if isscalar(max_shift); max_shift = max_shift*[1,1]; end
[nr,nc]=size(buf2ft);
Nr = ifftshift(-fix(nr/2):ceil(nr/2)-1);
Nc = ifftshift(-fix(nc/2):ceil(nc/2)-1);
buf_prod = buf1ft.*conj(buf2ft);
if usfac == 0
% Simple computation of error and phase difference without registration
CCmax = sum(buf1ft(:).*conj(buf2ft(:)));
row_shift = 0;
col_shift = 0;
elseif usfac == 1
% Single pixel registration
if phase_flag
buf_prod = buf_prod./abs(buf_prod);
end
CC = ifft2(buf_prod);
CCabs = abs(CC);
[row_shift, col_shift] = find(CCabs == max(CCabs(:)));
if Nr(row_shift) > max_shift(1) || Nc(col_shift) > max_shift(2) || Nr(row_shift) < min_shift(1) || Nc(col_shift) < min_shift(2)
CCabs2 = CCabs;
CCabs2(Nr>max_shift(1),:) = 0;
CCabs2(:,Nc>max_shift(2)) = 0;
CCabs2(Nr<min_shift(1),:) = 0;
CCabs2(:,Nc<min_shift(2)) = 0;
[row_shift, col_shift] = find(CCabs == max(CCabs2(:)),1,'first');
end
CCmax = CC(row_shift,col_shift)*nr*nc;
% Now change shifts so that they represent relative shifts and not indices
row_shift = Nr(row_shift);
col_shift = Nc(col_shift);
elseif usfac > 1
% Start with usfac == 2
buf_pad = FTpad(buf_prod,[2*nr,2*nc]);
if phase_flag
buf_pad = buf_pad./(abs(buf_pad)+1e-10);
end
CC = ifft2(buf_pad);
CCabs = abs(CC);
[row_shift, col_shift] = find(CCabs == max(CCabs(:)),1,'first');
% Now change shifts so that they represent relative shifts and not indices
Nr2 = ifftshift(-fix(nr):ceil(nr)-1);
Nc2 = ifftshift(-fix(nc):ceil(nc)-1);
if Nr2(row_shift)/2 > max_shift(1) || Nc2(col_shift)/2 > max_shift(2) || Nr2(row_shift)/2 < min_shift(1) || Nc2(col_shift)/2 < min_shift(2)
CCabs2 = CCabs;
CCabs2(Nr2/2>max_shift(1),:) = 0;
CCabs2(:,Nc2/2>max_shift(2)) = 0;
CCabs2(Nr2/2<min_shift(1),:) = 0;
CCabs2(:,Nc2/2<min_shift(2)) = 0;
[row_shift, col_shift] = find(CCabs == max(CCabs2(:)),1,'first');
end
CCmax = CC(row_shift,col_shift)*nr*nc;
row_shift = Nr2(row_shift)/2;
col_shift = Nc2(col_shift)/2;
% If upsampling > 2, then refine estimate with matrix multiply DFT
if usfac > 2,
%%% DFT computation %%%
% Initial shift estimate in upsampled grid
row_shift = round(row_shift*usfac)/usfac;
col_shift = round(col_shift*usfac)/usfac;
dftshift = fix(ceil(usfac*1.5)/2); %% Center of output array at dftshift+1
% Matrix multiply DFT around the current shift estimate
CC = conj(dftups(buf2ft.*conj(buf1ft),ceil(usfac*1.5),ceil(usfac*1.5),usfac,...
dftshift-row_shift*usfac,dftshift-col_shift*usfac));
% Locate maximum and map back to original pixel grid
CCabs = abs(CC);
[rloc, cloc] = find(CCabs == max(CCabs(:)),1,'first');
CCmax = CC(rloc,cloc);
rloc = rloc - dftshift - 1;
cloc = cloc - dftshift - 1;
row_shift = row_shift + rloc/usfac;
col_shift = col_shift + cloc/usfac;
end
% If its only one row or column the shift along that dimension has no
% effect. Set to zero.
if nr == 1,
row_shift = 0;
end
if nc == 1,
col_shift = 0;
end
end
%rg00 = sum(abs(buf1ft(:)).^2);
%rf00 = sum(abs(buf2ft(:)).^2);
%error = 1.0 - abs(CCmax).^2/(rg00*rf00);
%error = sqrt(abs(error));
error = 1;
diffphase = angle(CCmax);
output=[error,diffphase,row_shift,col_shift];
% Compute registered version of buf2ft
if (nargout > 1)&&(usfac > 0),
[Nc,Nr] = meshgrid(Nc,Nr);
Greg = buf2ft.*exp(1i*2*pi*(-row_shift*Nr/nr-col_shift*Nc/nc));
Greg = Greg*exp(1i*diffphase);
elseif (nargout > 1)&&(usfac == 0)
Greg = buf2ft*exp(1i*diffphase);
end
return
function out=dftups(in,nor,noc,usfac,roff,coff)
% function out=dftups(in,nor,noc,usfac,roff,coff);
% Upsampled DFT by matrix multiplies, can compute an upsampled DFT in just
% a small region.
% usfac Upsampling factor (default usfac = 1)
% [nor,noc] Number of pixels in the output upsampled DFT, in
% units of upsampled pixels (default = size(in))
% roff, coff Row and column offsets, allow to shift the output array to
% a region of interest on the DFT (default = 0)
% Recieves DC in upper left corner, image center must be in (1,1)
% Manuel Guizar - Dec 13, 2007
% Modified from dftus, by J.R. Fienup 7/31/06
% This code is intended to provide the same result as if the following
% operations were performed
% - Embed the array "in" in an array that is usfac times larger in each
% dimension. ifftshift to bring the center of the image to (1,1).
% - Take the FFT of the larger array
% - Extract an [nor, noc] region of the result. Starting with the
% [roff+1 coff+1] element.
% It achieves this result by computing the DFT in the output array without
% the need to zeropad. Much faster and memory efficient than the
% zero-padded FFT approach if [nor noc] are much smaller than [nr*usfac nc*usfac]
[nr,nc]=size(in);
% Set defaults
if exist('roff', 'var')~=1, roff=0; end
if exist('coff', 'var')~=1, coff=0; end
if exist('usfac','var')~=1, usfac=1; end
if exist('noc', 'var')~=1, noc=nc; end
if exist('nor', 'var')~=1, nor=nr; end
% Compute kernels and obtain DFT by matrix products
kernc=exp((-1i*2*pi/(nc*usfac))*( ifftshift(0:nc-1).' - floor(nc/2) )*( (0:noc-1) - coff ));
kernr=exp((-1i*2*pi/(nr*usfac))*( (0:nor-1).' - roff )*( ifftshift([0:nr-1]) - floor(nr/2) ));
out=kernr*in*kernc;
return
% function imFTout = FTpad(imFT,outsize)
%
% Nin = size(imFT);
% cen = ceil(Nin/2);
% rows = repmat([1:cen(1),outsize(1) - Nin(1) + cen(1) + 1:outsize(1)]',Nin(2),1);
% columns = repmat([1:cen(2),outsize(1) - Nin(1) + cen(1) + 1:outsize(1)],Nin(1),1);
% imFTout = full(sparse(rows,columns,imFT))*4;
% return
% function imFTout = FTpad2(imFT,outsize)
%
% Nin = size(imFT);
% cen = ceil(Nin/2);
% imFTout = [kron([1,0;0,0],imFT(1:cen(1),1:cen(2))), kron([0,1;0,0],imFT(1:cen(1),cen(2)+1:Nin(2))); ...
% kron([0,0;1,0],imFT(cen(1)+1:Nin(1),1:cen(2))), kron([0,0;0,1],imFT(cen(1)+1:Nin(1),cen(2)+1:Nin(2)))]*4;
% return
function [ imFTout ] = FTpad(imFT,outsize)
% imFTout = FTpad(imFT,outsize)
% Pads or crops the Fourier transform to the desired ouput size. Taking
% care that the zero frequency is put in the correct place for the output
% for subsequent FT or IFT. Can be used for Fourier transform based
% interpolation, i.e. dirichlet kernel interpolation.
%
% Inputs
% imFT - Input complex array with DC in [1,1]
% outsize - Output size of array [ny nx]
%
% Outputs
% imout - Output complex image with DC in [1,1]
% Manuel Guizar - 2014.06.02
if ~ismatrix(imFT)
error('Maximum number of array dimensions is 2')
end
Nout = outsize;
Nin = size(imFT);
imFT = fftshift(imFT);
center = floor(size(imFT)/2)+1;
imFTout = zeros(outsize);
centerout = floor(size(imFTout)/2)+1;
% imout(centerout(1)+[1:Nin(1)]-center(1),centerout(2)+[1:Nin(2)]-center(2)) ...
% = imFT;
cenout_cen = centerout - center;
imFTout(max(cenout_cen(1)+1,1):min(cenout_cen(1)+Nin(1),Nout(1)),max(cenout_cen(2)+1,1):min(cenout_cen(2)+Nin(2),Nout(2))) ...
= imFT(max(-cenout_cen(1)+1,1):min(-cenout_cen(1)+Nout(1),Nin(1)),max(-cenout_cen(2)+1,1):min(-cenout_cen(2)+Nout(2),Nin(2)));
imFTout = ifftshift(imFTout)*Nout(1)*Nout(2)/(Nin(1)*Nin(2));
return