forked from bigdatagenomics/avocado
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[AVOCADO-202] Pulled back in TreeRegionJoin.
Resolves bigdatagenomics#202.
- Loading branch information
Showing
3 changed files
with
462 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
204 changes: 204 additions & 0 deletions
204
avocado-core/src/main/scala/org/bdgenomics/avocado/util/TreeRegionJoin.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
/** | ||
* Licensed to Big Data Genomics (BDG) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The BDG licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package org.bdgenomics.avocado.util | ||
|
||
import com.esotericsoftware.kryo.io.{ Input, Output } | ||
import com.esotericsoftware.kryo.{ Kryo, Serializer } | ||
import org.apache.spark.SparkContext._ | ||
import org.apache.spark.rdd.RDD | ||
import org.bdgenomics.adam.models.{ | ||
ReferenceRegion, | ||
ReferenceRegionSerializer | ||
} | ||
import org.bdgenomics.avocado.Timers._ | ||
import scala.annotation.tailrec | ||
import scala.reflect.ClassTag | ||
|
||
/** | ||
* Companion object for building a forest from an RDD. | ||
*/ | ||
private[avocado] object Forest extends Serializable { | ||
|
||
/** | ||
* Sorts the RDD and collects it to build the tree. | ||
* | ||
* @param rdd RDD to build a forest from. | ||
* @return The forest built from this RDD. | ||
*/ | ||
def apply[T: ClassTag](rdd: RDD[(ReferenceRegion, T)]): Forest[T] = BuildingTrees.time { | ||
val sortedArray = SortingRightSide.time { | ||
rdd.sortByKey() | ||
.collect | ||
} | ||
|
||
Forest(sortedArray) | ||
} | ||
} | ||
|
||
/** | ||
* Originally, a forest was a collection of trees. | ||
* Alas, we have no trees anymore. | ||
* I blame global warming. | ||
* | ||
* @param array An array of values for the left side of the join. We require | ||
* this array to be sorted. | ||
*/ | ||
private[avocado] case class Forest[T: ClassTag](array: Array[(ReferenceRegion, T)]) { | ||
|
||
val length = array.length | ||
val midpoint = pow2ceil() | ||
|
||
@tailrec private def pow2ceil(i: Int = 1): Int = { | ||
if (2 * i >= length) { | ||
i | ||
} else { | ||
pow2ceil(2 * i) | ||
} | ||
} | ||
|
||
@tailrec private def binarySearch(rr: ReferenceRegion, | ||
idx: Int = 0, | ||
step: Int = midpoint): Option[Int] = { | ||
if (rr.overlaps(array(idx)._1)) { | ||
Some(idx) | ||
} else if (step == 0) { | ||
None | ||
} else { | ||
val stepIdx = idx + step | ||
val nextIdx = if (stepIdx >= length || | ||
(!rr.overlaps(array(stepIdx)._1) && | ||
rr.compareTo(array(stepIdx)._1) < 0)) { | ||
idx | ||
} else { | ||
stepIdx | ||
} | ||
binarySearch(rr, nextIdx, step / 2) | ||
} | ||
} | ||
|
||
@tailrec private def expand(rr: ReferenceRegion, | ||
idx: Int, | ||
step: Int, | ||
list: List[T] = List.empty): List[T] = { | ||
if (idx < 0 || | ||
idx >= length || | ||
!rr.overlaps(array(idx)._1)) { | ||
list | ||
} else { | ||
expand(rr, idx + step, step, array(idx)._2 :: list) | ||
} | ||
} | ||
|
||
/** | ||
* @param rr The reference region to grab. | ||
* @return All keys that overlap the reference region. | ||
*/ | ||
def get(rr: ReferenceRegion): Iterable[T] = { | ||
|
||
val optIdx = binarySearch(rr) | ||
|
||
optIdx.toIterable | ||
.flatMap(idx => { | ||
expand(rr, idx, -1) ::: expand(rr, idx + 1, 1) | ||
}) | ||
} | ||
} | ||
|
||
class ForestSerializer[T: ClassTag, TS <: Serializer[T]]( | ||
private val tSerializer: TS) extends Serializer[Forest[T]] { | ||
|
||
private val rrSerializer = new ReferenceRegionSerializer() | ||
|
||
def tTag: ClassTag[T] = implicitly[ClassTag[T]] | ||
|
||
def write(kryo: Kryo, output: Output, obj: Forest[T]) { | ||
|
||
// we will use the array length to allocate an array on read | ||
output.writeInt(obj.length) | ||
|
||
// loop and write elements | ||
(0 until obj.length).foreach(idx => { | ||
rrSerializer.write(kryo, output, obj.array(idx)._1) | ||
tSerializer.write(kryo, output, obj.array(idx)._2) | ||
}) | ||
} | ||
|
||
def read(kryo: Kryo, input: Input, klazz: Class[Forest[T]]): Forest[T] = { | ||
|
||
// read the array size and allocate | ||
val length = input.readInt() | ||
val array = new Array[(ReferenceRegion, T)](length) | ||
|
||
// loop and read | ||
(0 until length).foreach(idx => { | ||
array(idx) = (rrSerializer.read(kryo, input, classOf[ReferenceRegion]), | ||
tSerializer.read(kryo, input, tTag.runtimeClass.asInstanceOf[Class[T]])) | ||
}) | ||
|
||
Forest[T](array) | ||
} | ||
} | ||
|
||
/** | ||
* Implements a shuffle free broadcast region join. | ||
* | ||
* The broadcast values are stored in a sorted array. It was going to be an | ||
* ensemble of interval trees, but, that didn't work out. | ||
*/ | ||
object TreeRegionJoin extends Serializable { | ||
|
||
/** | ||
* Performs an inner region join between two RDDs, and groups by the | ||
* value on the right side of the join. | ||
* | ||
* @param leftRdd RDD on the left side of the join. Will be collected to the | ||
* driver and broadcast. | ||
* @param rightRdd RDD on the right side of the join. | ||
* @return Returns an RDD where each element is a value from the right RDD, | ||
* along with all values from the left RDD that it overlapped. | ||
*/ | ||
def joinAndGroupByRight[T: ClassTag, U]( | ||
leftRdd: RDD[(ReferenceRegion, T)], | ||
rightRdd: RDD[(ReferenceRegion, U)]): RDD[(Iterable[T], U)] = TreeJoin.time { | ||
|
||
// build the tree from the left RDD | ||
val tree = Forest(leftRdd) | ||
|
||
RunningMapSideJoin.time { | ||
// broadcast this tree | ||
val broadcastTree = leftRdd.context | ||
.broadcast(tree) | ||
|
||
// map and join | ||
rightRdd.flatMap(kv => { | ||
val (rr, u) = kv | ||
|
||
// what values keys does this overlap in the tree? | ||
val overlappingValues = broadcastTree.value | ||
.get(rr) | ||
|
||
// did we get any overlapping values? | ||
if (overlappingValues.nonEmpty) { | ||
Some((overlappingValues, u)) | ||
} else { | ||
None | ||
} | ||
}) | ||
} | ||
} | ||
} |
Oops, something went wrong.