Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix dask bugs #507

Merged
merged 2 commits into from
Aug 17, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions fugue_dask/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ def hash_repartition(df: dd.DataFrame, num: int, cols: List[Any]) -> dd.DataFram
return df
if num == 1:
return df.repartition(1)
df = df.reset_index(drop=True).clear_divisions()
idf, ct = _add_hash_index(df, num, cols)
return _postprocess(idf, ct, num)

Expand All @@ -63,9 +64,10 @@ def even_repartition(df: dd.DataFrame, num: int, cols: List[Any]) -> dd.DataFram
"""
if num == 1:
return df.repartition(1)
if len(cols) == 0 and num <= 0:
return df
df = df.reset_index(drop=True).clear_divisions()
if len(cols) == 0:
if num <= 0:
return df
idf, ct = _add_continuous_index(df)
else:
idf, ct = _add_group_index(df, cols, shuffle=False)
Expand Down Expand Up @@ -97,6 +99,7 @@ def rand_repartition(
return df
if num == 1:
return df.repartition(1)
df = df.reset_index(drop=True).clear_divisions()
if len(cols) == 0:
idf, ct = _add_random_index(df, num=num, seed=seed)
else:
Expand Down
45 changes: 43 additions & 2 deletions tests/fugue_dask/test_execution_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@
from threading import RLock
from typing import Any, List, Optional

import dask
import dask.dataframe as dd
import numpy as np
import pandas as pd
import pytest
from dask.distributed import Client
Expand All @@ -25,7 +25,6 @@
from fugue_test.builtin_suite import BuiltInTests
from fugue_test.execution_suite import ExecutionEngineTests


_CONF = {
"fugue.rpc.server": "fugue.rpc.flask.FlaskRPCServer",
"fugue.rpc.flask_server.host": "127.0.0.1",
Expand Down Expand Up @@ -321,6 +320,48 @@ def tr(df: List[List[Any]], add: Optional[callable]) -> List[List[Any]]:
assert 5 == cb.n


def test_multiple_transforms(fugue_dask_client):
def t1(df: pd.DataFrame) -> pd.DataFrame:
return pd.concat([df, df])

def t2(df: pd.DataFrame) -> pd.DataFrame:
return (
df.groupby(["a", "b"], as_index=False, dropna=False)
.apply(lambda x: x.head(1))
.reset_index(drop=True)
)

def compute(df: pd.DataFrame, engine) -> pd.DataFrame:
with fa.engine_context(engine):
ddf = fa.as_fugue_df(df)
ddf1 = fa.transform(ddf, t1, schema="*", partition=dict(algo="hash"))
ddf2 = fa.transform(
ddf1,
t2,
schema="*",
partition=dict(by=["a", "b"], presort="c", algo="coarse", num=2),
)
return (
ddf2.as_pandas()
.astype("float64")
.fillna(float("nan"))
.sort_values(["a", "b"])
)

np.random.seed(0)
df = pd.DataFrame(
dict(
a=np.random.randint(1, 5, 1000),
b=np.random.choice([1, 2, 3, None], 1000),
c=np.random.rand(1000),
)
)

actual = compute(df, fugue_dask_client)
expected = compute(df, None)
assert np.allclose(actual, expected, equal_nan=True)


@transformer("ct:long")
def count_partition(df: List[List[Any]]) -> List[List[Any]]:
return [[len(df)]]
Expand Down