Skip to content
/ DSS Public
forked from yifita/DSS

Differential Surface Splatting

Notifications You must be signed in to change notification settings

gafniguy/DSS

 
 

Repository files navigation

DSS: Differentiable Surface Splatting

Paper PDF Project page

bunny

code for paper Differentiable Surface Splatting for Point-based Geometry Processing

installation

  1. clone
git clone --recursive https://gitlab.inf.ethz.ch/OU-SORKINE/dss.git
cd dss
  1. install prequisitories. Our code uses python3.7, the installation instruction requires the latest anaconda.
# install cuda, cudnn, nccl from nvidia
# we tested with cuda 10.1, cudnn 7.5, nccl 1.3.5
# update conda
conda update -n base -c defaults conda
# install requirements
conda config --add channels pytorch
conda config --add channels conda-forge
conda create --name DSS --file requirements.txt
conda activate DSS
# plyfile package is not on conda
pip install plyfile
  1. compile cuda library
cd pytorch_points
python setup.py install
cd ..
python setup.py develop

Demos

inverse rendering - shape deformation

2D grid to teapot
python learn_shape_from_target.py -t example_data/scenes/good_teapot.json

teapot_2D

sphere to teapot
# inverse rendering test: optimize point positions and normals to transform sphere to teapot
python learn_shape_from_target.py example_data/scenes/sphere.json -t example_data/scenes/teapot.json

teapot

cube to yoga
python learn_shape_from_target.py example_data/scenes/cube_20k.json  -t example_data/scenes/yoga6.json --name yoga6_z_paper_1

yoga1

python finetune_shape.py learn_examples/yoga6_z_paper_1/final_scene.json  -t example_data/scenes/yoga6.json --name yoga6_z_paper_1_1

yoga2

denoising

cd trained_models
# unix system can run this command directly
./download_data.sh
# 0.3% noise
python learn_image_filter.py example_data/scenes/pix2pix_denoise.json --cloud example_data/pointclouds/noisy03_points/a72-seated_jew_aligned_pca.ply

denoise_0.3noise

# 1.0% noise
python learn_image_filter.py example_data/scenes/pix2pix_denoise_noise01.json --cloud example_data/noisy1_points/a72-seated_jew_aligned_pca.ply

denoise_1noise

other functions

render object 360 degree

python sequences.py example_data/scenes/teapot.json --points example_data/pointclouds/teapot_normal_dense.ply --width 512 --height 512 --output renders/teapot_360
# then you can create gif. on ubuntu this can be done with
convert -dispose 2 -delay 10 renders/teapot_360/*.png renders/teapot_360/animation.gif

teapot_sequence

video

accompanying video

cite

Please cite us if you find the code useful!

@article{Yifan:DSS:2019,
author = {Yifan, Wang and 
          Serena, Felice and 
          Wu, Shihao and
          {\"{O}}ztireli, Cengiz and
         Sorkine{-}Hornung, Olga},
title = {Differentiable Surface Splatting for Point-based Geometry Processing},
journal = {ACM Transactions on Graphics (proceedings of ACM SIGGRAPH ASIA)},
volume = {38},
number = {6},
year = {2019},
}

Acknowledgement

We would like to thank Federico Danieli for the insightful discussion, Phillipp Herholz for the timely feedack, Romann Weber for the video voice-over and Derek Liu for the help during the rebuttal. This work was supported in part by gifts from Adobe, Facebook and Snap, Inc.

About

Differential Surface Splatting

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 77.3%
  • Cuda 17.7%
  • C++ 4.7%
  • Shell 0.3%