Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ProteoRE tool 'get_unique_peptide_srm_method' #591

Open
wants to merge 14 commits into
base: master
Choose a base branch
from
Open
4 changes: 4 additions & 0 deletions tools/proteore_get_unique_peptide_srm_method/.shed.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
categories: [Proteomics]
description: Get unique peptide SRM-MRM method [SRM Atlas]
name: proteore_get_unique_peptide_srm_method
owner: galaxyp
64 changes: 64 additions & 0 deletions tools/proteore_get_unique_peptide_srm_method/README.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
**Description**

This tool allows to retrieve unique proteotypic peptide and related information (from SRMAtlas)
for building Selected Reaction Monitoring (SRM) method using a list of Uniprot accession number as input.
The SRMAtlas is a compendium of targeted proteomics assays resulting from high-quality measurements of natural
and synthetic peptides conducted on a triple quadrupole mass spectrometer, and is intended as a resource
for building selected/multiple reaction monitoring (SRM/MRM)-based proteomic methods.

-----

**Input**

A list of IDs (entered in a copy/paste mode) or a single-column file, the tool will then return a file containing
the selected information (peptide sequence/features). If your input is a multiple-column file, the column(s)
containing the selected information will be added at the end of the input file. Only Uniprot accession number (e.g. P31946) are allowed.
If your list of IDs is not in this form, please use the ID_Converter tool of ProteoRE.

.. class:: warningmark

Accession numbers with an hyphen ("-") that normally correspond to isoform are not considered as similar to its canonical form.

.. class:: warningmark

In copy/paste mode, the number of IDs considered in input is limited to 5000.

-----

**Parameters**

Release: choose the release you want to use for retrieving peptide sequences/features
Peptide sequence/features: select peptide features you want to retrieve; Peptide sequence
(amino acid sequence of detected peptide, including any mass modifications);
SSRT (Sequence Specific Retention Time provides a hydrophobicity measure for each peptide using
the algorithm of Krohkin et al. SSRCalc); Length (peptide sequence length); MW (molecular weight);
PeptideAtlas Accession (PA_Acc).

-----

**Output**

A text file containing the selected peptide features (in addition to the original column(s) provided).
Please, note that a "NA" is returned when there is no match between a source ID and SRM/MRM source file.

-----

**Data sources (release date)**

This tool is using the following source file:

- `HumanSRMAtlasPeptidesFinalAnnotated (2016-04) (Kusebauch et al., 2016, PMID: 27453469) <http://www.srmatlas.org/downloads/HumanSRMAtlasPeptidesFinalAnnotated.xlsx>`_.

-----

.. class:: infomark

**Authors**

David Christiany, Florence Combes, Yves Vandenbrouck CEA, INSERM, CNRS, Grenoble-Alpes University, BIG Institute, FR

Sandra Dérozier, Olivier Rué, Christophe Caron, Valentin Loux INRA, Paris-Saclay University, MAIAGE Unit, Migale Bioinformatics platform, FR

This work has been partially funded through the French National Agency for Research (ANR) IFB project.

Help: [email protected] for any questions or concerns about this tool.
218 changes: 218 additions & 0 deletions tools/proteore_get_unique_peptide_srm_method/get_unique_srm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
import argparse
import csv
import re


def get_args():

parser = argparse.ArgumentParser()
parser.add_argument("--input_type", help="type of input (list of id or filename)", required=True) # noqa 501
parser.add_argument("-i", "--input", help="list of IDs (text or filename)", required=True) # noqa 501
parser.add_argument("--header", help="true/false if your file contains a header") # noqa 501
parser.add_argument("-c", "--column_number", help="list of IDs (text or filename)") # noqa 501
parser.add_argument("-f", "--features", help="Protein features to return from SRM Atlas", required=True) # noqa 501
parser.add_argument("-d", "--ref_file", help="path to reference file", required=True) # noqa 501
parser.add_argument("-o", "--output", help="output filename", required=True) # noqa 501
args = parser.parse_args()
return args

# return the column number in int format


def nb_col_to_int(nb_col):
try:
nb_col = int(nb_col.replace("c", "")) - 1
return nb_col
except: # noqa 722
sys.exit("Please specify the column where you would like to apply the filter with valid format") # noqa 501, 821

# replace all blank cells to NA


def blank_to_NA(csv_file):
tmp = []
for line in csv_file:
line = ["NA" if cell == "" or cell == " " or cell == "NaN" else cell for cell in line] # noqa 501
tmp.append(line)

return tmp

# convert string to boolean


def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')

# return list of (unique) ids from string


def get_input_ids_from_string(input):

ids_list = list(set(re.split(r'\s+', input.replace("_SNP", "").replace("d_", "").replace("\r", "").replace("\n", " ").replace("\t", " ")))) # noqa 501
if "" in ids_list:
ids_list.remove("")

return ids_list

# return input_file and list of unique ids from input file path


def get_input_ids_from_file(input, nb_col, header):
with open(input, "r") as csv_file:
input_file = list(csv.reader(csv_file, delimiter='\t'))

input_file, ids_list = one_id_one_line(input_file, nb_col, header)
if "" in ids_list:
ids_list.remove("")

return input_file, ids_list

# function to check if an id is an uniprot accession number:
# return True or False


def check_uniprot(id):
uniprot_pattern = re.compile("[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}") # noqa 501
if uniprot_pattern.match(id):
return True
else:
return False

# return input file by adding lines when there are more than one id per line


def one_id_one_line(input_file, nb_col, header):

if header:
new_file = [input_file[0]]
input_file = input_file[1:]
else:
new_file = []
ids_list = []

for line in input_file:
if line != [] and set(line) != {''}:
line[nb_col] = re.sub(r"\s+", "", line[nb_col])
if line[nb_col] == "":
line[nb_col] = 'NA'
if ";" in line[nb_col]:
ids = line[nb_col].split(";")
for id in ids:
new_file.append(line[:nb_col] + [id] + line[nb_col + 1:])
ids_list.append(id)
else:
new_file.append(line)
ids_list.append(line[nb_col])

ids_list = [e.replace("_SNP", "").replace("d_", "") for e in ids_list]
ids_list = list(set(ids_list))

return new_file, ids_list


def create_srm_atlas_dictionary(features, srm_atlas_csv):

srm_atlas = {}
features_index = {"PeptideSeq": 0, "SSRT": 1, "Length": 2, "type":3, "PA_AccNum": 4, "MW": 5} # noqa 501
features_to_get = [features_index[feature] for feature in features]
for line in srm_atlas_csv[1:]:
id = line[9].replace("_SNP", "").replace("d_", "")
if id not in srm_atlas:
srm_atlas[id] = [[line[i] for i in features_to_get]]
else:
srm_atlas[id].append([line[i] for i in features_to_get])
return srm_atlas


def retrieve_srm_features(srm_atlas, ids):

result_dict = {}
for id in ids:
if id in srm_atlas:
res = srm_atlas[id]
else:
res = ""
result_dict[id] = res
return result_dict


def create_header(input_file, ncol, features):
col_names = list(range(1, len(input_file[0]) + 1))
col_names = ["col" + str(e) for e in col_names]
col_names[ncol] = "Uniprot-AC"
col_names = col_names + features
return(col_names)


def main():

# Get args from command line
args = get_args()
features = args.features.split(",")
header = False
if args.input_type == "file":
column_number = nb_col_to_int(args.column_number)
header = str2bool(args.header)

# Get reference file (Human SRM Atlas)
with open(args.ref_file, "r") as csv_file:
srm_atlas_csv = csv.reader(csv_file, delimiter='\t')
srm_atlas_csv = [line for line in srm_atlas_csv]

# Create srm Atlas dictionary
srm_atlas = create_srm_atlas_dictionary(features, srm_atlas_csv)

# Get file and/or ids from input
if args.input_type == "list":
ids = get_input_ids_from_string(args.input)
elif args.input_type == "file":
input_file, ids = get_input_ids_from_file(args.input,
column_number, header)

# Check Uniprot-AC
if not any([check_uniprot(id) for id in ids]):
print("No Uniprot-AC found, please check your input")
exit()

# retrieve features
result_dict = retrieve_srm_features(srm_atlas, ids)

# write output
with open(args.output, "w") as output:
writer = csv.writer(output, delimiter="\t")

# write header
if header:
writer.writerow(input_file[0] + features)
input_file = input_file[1:]
elif args.input_type == "file":
col_names = [create_header(input_file, column_number, features)]
writer.writerow(col_names)
else:
writer.writerow(["Uniprot-AC"] + features)

# write lines
previous_line = ""
if args.input_type == "file":
for line in input_file:
for res in result_dict[line[column_number]]:
output_line = ["NA" if cell == "" or cell == " " or cell == "NaN" else cell for cell in line+res] # noqa 501
if previous_line != output_line:
writer.writerow(output_line)
previous_line = output_line
elif args.input_type == "list":
for id in ids:
for res in result_dict[id]:
line = ["NA" if cell == "" or cell == " " or cell == "NaN" else cell for cell in [id]+res] # noqa 501
if previous_line != line:
writer.writerow(line)
previous_line = line


if __name__ == "__main__":
main()
Loading