Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hydra yaml config #81

Merged
merged 30 commits into from
Jun 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
30 commits
Select commit Hold shift + click to select a range
dfda24f
Initial implementation with hydra
kks32 Jun 25, 2024
50c63c2
Test CI for config yaml
kks32 Jun 25, 2024
c93c335
Testing CI for hydra
kks32 Jun 25, 2024
13c5204
Try pip requirements.txt
kks32 Jun 25, 2024
7ebded9
Try pip instead of conda for docker
kks32 Jun 25, 2024
85ff713
Docker build on GitHub
kks32 Jun 25, 2024
e607f98
Copy requirements.txt file before installing on Docker container
kks32 Jun 25, 2024
9913d92
Copy requirements.txt
kks32 Jun 25, 2024
111b428
Copy requirements.txt
kks32 Jun 25, 2024
3606790
Trying with user flag
kks32 Jun 25, 2024
b6cea3e
Trying Python 3.11
kks32 Jun 25, 2024
f9cb06d
Test CircleCI with ghcr container image
kks32 Jun 25, 2024
5d8ce23
GitHub Actions workflow to test training GNS
kks32 Jun 25, 2024
b230de8
Updated dockerfile with paths and env
kks32 Jun 25, 2024
20fa700
Modify workflow to run training
kks32 Jun 25, 2024
7764f9d
Add at least one epoch to run when nsteps is fewer than 1 epoch steps
kks32 Jun 25, 2024
1e612df
Train GNS action
kks32 Jun 25, 2024
1f0b8cd
Test without docker pull on CircleCI
kks32 Jun 25, 2024
8c0ddad
Specify path and branches
kks32 Jun 25, 2024
4a7e5c4
Fix path to GNS sample output
kks32 Jun 25, 2024
c5bcc44
Worflow runs on Github and remove conda on circleci
kks32 Jun 25, 2024
dc27691
No black check
kks32 Jun 25, 2024
5329b78
Only try to build container if specific files have changed
kks32 Jun 25, 2024
a97cd5e
Fix resume training and README
kks32 Jun 25, 2024
170037b
Reduce number of steps to 100 for testing
kks32 Jun 25, 2024
40b4919
Refactor constants to data
kks32 Jun 25, 2024
c6b092d
Remove on PR
kks32 Jun 25, 2024
14f3b9e
Add config to tensorboard writer
kks32 Jun 26, 2024
87de917
Fix formatting and issue with cfg.data.path
kks32 Jun 28, 2024
60261e3
Black linter
kks32 Jun 28, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 5 additions & 28 deletions .circleci/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,40 +2,17 @@ version: 2.0
jobs:
gns:
docker:
- image: quay.io/geoelements/gns
- image: ghcr.io/geoelements/gns:config
steps:
- checkout
# GCC
- run:
name: Train & Test
command: |
TMP_DIR="./gns-sample"
DATASET_NAME="WaterDropSample"
git clone https://github.com/geoelements/gns-sample
mkdir -p ${TMP_DIR}/${DATASET_NAME}/models/
mkdir -p ${TMP_DIR}/${DATASET_NAME}/rollout/
DATA_PATH="${TMP_DIR}/${DATASET_NAME}/dataset/"
MODEL_PATH="${TMP_DIR}/${DATASET_NAME}/models/"
ROLLOUT_PATH="${TMP_DIR}/${DATASET_NAME}/rollout/"
conda install -c anaconda absl-py -y
conda install -c conda-forge numpy -y
conda install -c conda-forge dm-tree -y
conda install -c conda-forge matplotlib-base -y
conda install -c conda-forge pyevtk -y
conda install -c conda-forge pytest -y
conda install -c conda-forge tensorboard -y
git clone https://github.com/geoelements/gns-sample ../gns-sample
pytest test/
echo "Test paths: ${DATA_PATH} ${MODEL_PATH}"
ls
python -m gns.train --data_path=${DATA_PATH} --model_path=${MODEL_PATH} --ntraining_steps=10
echo "Predict rollout"
ls ./gns-sample/WaterDropSample/models/

- run:
name: Black check
command: |
conda install -c conda-forge black -y
black --check .
python -m gns.train
ls ../gns-sample/WaterDropSample/models/


workflows:
version: 2
Expand Down
43 changes: 43 additions & 0 deletions .github/workflows/container.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
name: Build and Push to GHCR

on:
push:
paths:
- Dockerfile
- requirements.txt

env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}

jobs:
build-and-push:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write

steps:
- name: Checkout repository
uses: actions/checkout@v4

- name: Log in to the Container registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}

- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}

- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: .
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
29 changes: 29 additions & 0 deletions .github/workflows/train.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
name: GNS Train and Test

on:
push:

jobs:
gns:
runs-on: ubuntu-latest
container:
image: ghcr.io/geoelements/gns:config

steps:
- name: Checkout repository
uses: actions/checkout@v4

- name: Black linter check
run: |
black --check .

- name: PyTest
run: |
pytest test/

- name: Train GNS
run: |
TMP_DIR="../gns-sample"
DATASET_NAME="WaterDropSample"
git clone https://github.com/geoelements/gns-sample ../gns-sample
python -m gns.train
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
scratch
log
**/logs/*
outputs/*

# Byte-compiled / optimized / DLL files
__pycache__/
Expand Down
35 changes: 25 additions & 10 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -1,10 +1,25 @@
FROM continuumio/anaconda3:latest
RUN conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cpuonly -c pytorch
RUN conda install pyg -c pyg
RUN conda install -c anaconda absl-py
RUN conda install -c conda-forge numpy
RUN conda install -c conda-forge dm-tree
RUN conda install -c conda-forge matplotlib-base
RUN conda install -c conda-forge pyevtk
WORKDIR /home/gns
RUN /bin/bash
FROM python:3.11

WORKDIR /app

COPY requirements.txt .

RUN pip3 install --upgrade pip && \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu && \
pip3 install torch_geometric && \
pip3 install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.3.0+cpu.html && \
pip3 install -r requirements.txt

ENV PYTHONPATH=/app

# Add Python path to PATH
ENV PATH="/usr/local/bin:${PATH}"

# Create a bash script to set up the environment
RUN echo '#!/bin/bash\n\
export PYTHONPATH=/app\n\
export PATH="/usr/local/bin:$PATH"\n\
exec "$@"' > /entrypoint.sh && chmod +x /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]
CMD ["/bin/bash"]
149 changes: 61 additions & 88 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ MeshNet is a scalable surrogate simulator for any mesh-based models like Finite
> Training GNS/MeshNet on simulation data
```shell
# For particulate domain,
python3 -m gns.train --data_path="<input-training-data-path>" --model_path="<path-to-load-save-model-file>" --ntraining_steps=100
python3 -m gns.train mode="train" --config-path ./ --config-name config.yaml
# For mesh-based domain,
python3 -m meshnet.train --data_path="<input-training-data-path>" --model_path="<path-to-load-save-model-file>" --ntraining_steps=100
```
Expand All @@ -29,15 +29,15 @@ To resume training specify `model_file` and `train_state_file`:

```shell
# For particulate domain,
python3 -m gns.train --data_path="<input-training-data-path>" --model_path="<path-to-load-save-model-file>" --model_file="model.pt" --train_state_file="train_state.pt" --ntraining_steps=100
python3 -m gns.train mode="train" training.resume=True
# For mesh-based domain,
python3 -m meshnet.train --data_path="<input-training-data-path>" --model_path="<path-to-load-save-model-file>" --model_file="model.pt" --train_state_file="train_state.pt" --ntraining_steps=100
```

> Rollout prediction
```shell
# For particulate domain,
python3 -m gns.train --mode="rollout" --data_path="<input-data-path>" --model_path="<path-to-load-save-model-file>" --output_path="<path-to-save-output>" --model_file="model.pt" --train_state_file="train_state.pt"
python3 -m gns.train mode="rollout"
# For mesh-based domain,
python3 -m meshnet.train --mode="rollout" --data_path="<input-data-path>" --model_path="<path-to-load-save-model-file>" --output_path="<path-to-save-output>" --model_file="model.pt" --train_state_file="train_state.pt"
```
Expand All @@ -61,91 +61,64 @@ In mesh-based domain, the renderer writes `.gif` animation.
> Meshnet GNS prediction of cylinder flow after training for 1 million steps.


## Command line arguments details
## Configuration file
<details>
<summary>`train.py` in GNS (particulate domain) </summary>

**mode (Enum)**

This flag is used to set the operation mode for the script. It can take one of three values; 'train', 'valid', or 'rollout'.

**batch_size (Integer)**

Batch size for training.

**noise_std (Float)**

Standard deviation of the noise when training.

**data_path (String)**

Specifies the directory path where the dataset is located.
The dataset is expected to be in a specific format (e.g., .npz files).
It should contain `metadata.json`.
If `--mode` is training, the directory should contain `train.npz`.
If `--mode` is testing (rollout), the directory should contain `test.npz`.
If `--mode` is valid, the directory should contain `valid.npz`.

**model_path (String)**

The directory path where the trained model checkpoints are saved during training or loaded from during validation/rollout.

**output_path (String)**

Defines the directory where the outputs (e.g., rollouts) are saved,
when the `--mode` is set to rollout.
This is particularly relevant in the rollout mode where the predictions of the model are stored.

**output_filename (String)**

Base filename to use when saving outputs during rollout.
Default is "rollout", and the output will be saved as `rollout.pkl` in `output_path`.
It is not intended to include the file extension.

**model_file (String)**

The filename of the model checkpoint to load for validation or rollout (e.g., model-10000.pt).
It supports a special value "latest" to automatically select the newest checkpoint file.
This flexibility facilitates the evaluation of models at different stages of training.

**train_state_file (String)**

Similar to model_file, but for loading the training state (e.g., optimizer state).
It supports a special value "latest" to automatically select the newest checkpoint file.
(e.g., training_state-10000.pt)

**ntraining_steps (Integer)**

The total number of training steps to execute before stopping.

**nsave_steps (Integer)**

Interval at which the model and training state are saved.

**lr_init (Float)**

Initial learning rate.

**lr_decay (Float)**

How much the learning rate should decay over time.

**lr_decay_steps (Integer)**

Steps at which learning rate should decay.

**cuda_device_number (Integer)**

Base CUDA device (zero indexed).
Default is None so default CUDA device will be used.

**n_gpus (Integer)**

Number of GPUs to use for training.

**tensorboard_log_dir (String)**

Path to log info on training and validation and visualize via tensorboard.
<summary>GNS (particulate domain) </summary>

```yaml
defaults:
- _self_
- override hydra/hydra_logging: disabled
- override hydra/job_logging: disabled

hydra:
output_subdir: null
run:
dir: .

# Top-level configuration
mode: train

# Data configuration
data:
path: ../gns-sample/WaterDropSample/dataset/
batch_size: 2
noise_std: 6.7e-4
input_sequence_length: 6
num_particle_types: 9
kinematic_particle_id: 3

# Model configuration
model:
path: ../gns-sample/WaterDropSample/models/
file: null
train_state_file: null

# Output configuration
output:
path: ../gns-sample/WaterDropSample/rollouts/
filename: rollout

# Training configuration
training:
steps: 2000
validation_interval: null
save_steps: 500
resume: False
learning_rate:
initial: 1e-4
decay: 0.1
decay_steps: 50000

# Hardware configuration
hardware:
cuda_device_number: null
n_gpus: 1

# Logging configuration
logging:
tensorboard_dir: logs/
```

</details>

Expand Down Expand Up @@ -254,7 +227,7 @@ The dataset is shared on [DesignSafe DataDepot](https://doi.org/10.17603/ds2-fzg

GNS uses [pytorch geometric](https://www.pyg.org/) and [CUDA](https://developer.nvidia.com/cuda-downloads). These packages have specific requirements, please see [PyG installation]((https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html) for details.

> CPU-only installation on Linux
> CPU-only installation on Linux (Conda)

```shell
conda install -y pytorch torchvision torchaudio cpuonly -c pytorch
Expand Down
Loading