Skip to content

Commit

Permalink
Add the validation score and training time for create_function in XGB…
Browse files Browse the repository at this point in the history
…oost (#1327)

Let us show the validation score and training time for the XGBoost
AutoML model trained. This shall give us fair enough idea on how the
model trained on the training data set.

---------

Co-authored-by: Jineet Desai <[email protected]>
  • Loading branch information
jineetd and Jineet Desai authored Nov 2, 2023
1 parent 52ff444 commit f409057
Show file tree
Hide file tree
Showing 4 changed files with 28 additions and 5 deletions.
2 changes: 1 addition & 1 deletion evadb/binder/function_expression_binder.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def bind_func_expr(binder: StatementBinder, node: FunctionExpression):
if string_comparison_case_insensitive(node.name, "CHATGPT"):
# if the user didn't provide any API_KEY, check if we have one in the catalog
if "OPENAI_API_KEY" not in properties.keys():
OpenAI_key = binder._catalog().get_configuration_catalog_value(
openai_key = binder._catalog().get_configuration_catalog_value(
"OPENAI_API_KEY"
)
properties["openai_api_key"] = openai_key
Expand Down
21 changes: 20 additions & 1 deletion evadb/executor/create_function_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -259,12 +259,16 @@ def handle_xgboost_function(self):

impl_path = Path(f"{self.function_dir}/xgboost.py").absolute().as_posix()
io_list = self._resolve_function_io(None)
best_score = model.best_loss
train_time = model.best_config_train_time
return (
self.node.name,
impl_path,
self.node.function_type,
io_list,
self.node.metadata,
best_score,
train_time,
)

def handle_ultralytics_function(self):
Expand Down Expand Up @@ -586,6 +590,8 @@ def exec(self, *args, **kwargs):
)

overwrite = False
best_score = False
train_time = False
# check catalog if it already has this function entry
if self.catalog().get_function_catalog_entry_by_name(self.node.name):
if self.node.if_not_exists:
Expand Down Expand Up @@ -648,6 +654,8 @@ def exec(self, *args, **kwargs):
function_type,
io_list,
metadata,
best_score,
train_time,
) = self.handle_xgboost_function()
elif string_comparison_case_insensitive(self.node.function_type, "Forecasting"):
(
Expand All @@ -674,7 +682,18 @@ def exec(self, *args, **kwargs):
msg = f"Function {self.node.name} overwritten."
else:
msg = f"Function {self.node.name} added to the database."
yield Batch(pd.DataFrame([msg]))
if best_score and train_time:
yield Batch(
pd.DataFrame(
[
msg,
"Validation Score: " + str(best_score),
"Training time: " + str(train_time),
]
)
)
else:
yield Batch(pd.DataFrame([msg]))

def _try_initializing_function(
self, impl_path: str, function_args: Dict = {}
Expand Down
8 changes: 6 additions & 2 deletions test/integration_tests/long/test_model_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,9 @@ def test_xgboost_regression(self):
METRIC 'r2'
TASK 'regression';
"""
execute_query_fetch_all(self.evadb, create_predict_function)
result = execute_query_fetch_all(self.evadb, create_predict_function)
self.assertEqual(len(result.columns), 1)
self.assertEqual(len(result), 3)

predict_query = """
SELECT PredictRentXgboost(number_of_rooms, number_of_bathrooms, days_on_market, rental_price) FROM HomeRentals LIMIT 10;
Expand All @@ -158,7 +160,9 @@ def test_xgboost_classification(self):
METRIC 'accuracy'
TASK 'classification';
"""
execute_query_fetch_all(self.evadb, create_predict_function)
result = execute_query_fetch_all(self.evadb, create_predict_function)
self.assertEqual(len(result.columns), 1)
self.assertEqual(len(result), 3)

predict_query = """
SELECT PredictEmployeeXgboost(payment_tier, age, gender, experience_in_current_domain, leave_or_not) FROM Employee LIMIT 10;
Expand Down
2 changes: 1 addition & 1 deletion test/integration_tests/short/test_select_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ def test_should_raise_binder_error_on_non_existent_column(self):
with self.assertRaises(BinderError) as ctx:
execute_query_fetch_all(self.evadb, select_query)
self.assertEqual(
"Cannnot find column b1. Did you mean a1? The feasible columns are ['_row_id', 'a0', 'a1', 'a2'].",
"Cannot find column b1. Did you mean a1? The feasible columns are ['_row_id', 'a0', 'a1', 'a2'].",
str(ctx.exception),
)

Expand Down

0 comments on commit f409057

Please sign in to comment.