Computer Vision project for painting detection from videos.
The videos are captured in the art museum Galleria Estense, Modena.
Download the weights and cfg file from here.
Unzip the directory in the root dir of the project.
Setup the python environment :
$ pip install -r requirements.txt
The outputs will be placed in the output
dir.
There will be a view for each frame containing the bounding boxes for every detected painting.
On top of every ROI you will find the title for the best match.
Every function (that represents a step) of the pipeline is returning the requested output.
$ python EyeOnArt.py material/test.mp4
usage: EyeOnArt.py [-h] [--skip N_FRAME] filename
-------------
| EyeOnArt |
-------------
Painting Detection project.
__________________________
/| Art Gallery |
/ | ____ ____ ____ |
/ | |o | | , | | _ | |
/ | | O | |. | |(@) | |
/ | |_,k,| |_,-,| |\|p | |
/ /| | | h | | ,; | | | | |
/ / | | |_z__| |____| |____| |
/ /@;| | z z |
/ |Y | z|_{)_______________________|
/ | / /z /H
/ /| |/ /z Y
/ / | / {) d
/ / %| / /|
| |&"| / Y
| | / / d
| |/ /
| /
| /
| /
| /
| /
|/
Credits :
Davide Casalini, Robert Covic & Stefano Rossi
positional arguments:
filename The filename to the source video you want to elaborate
optional arguments:
-h, --help show this help message and exit
--skip N_FRAME The number of frames to skip