CSCE 689: Machine Learning-Based CyberDefenses (Spring 2024) - Texas A&M University, College Station
Deliverable: Self-contained docker image with model querying via HTTP requests.
Hint: There are docker and web server templates in the MLSEC code made available to you.
Goals:
FPR: 1%
TPR: 95%
Constraints:
Memory: 1 GB max RAM
Response time: 5 seconds per sample
Warning: Timeouts will be considered evasions.
Deliverable: Evasive Malware Binaries.
Goals:
Evade the most models possible.
Constraints:
Maximum file size: 5MB of appended data.
Evasive sample execution in the sandbox must be equivalent to the original sample.
Minimum score for grading:
At least one sample must bypass at least one model.
We are team2 (Sonjoy Kumar Paul, Eric Muller, and Nhat Nguyen), here is the scoreboard.
Pickle Files (our machine learning models) are in google drive (https://drive.google.com/file/d/1SQ3ECf8cORC2tyyho9b6NXCtgNh8yJb2/view?usp=sharing).
Please get models from google drive, put pickle file (NES_MK1.pkl and NES_MK2.pkl) of model into defender/models folder.
- docker build -t mydefender .
- docker run -itp 8080:8080 --memory=1.0g --cpus=1 mydefender
docker pull sonjoykp/ml-based-malware-defender:team1
docker run -itp 8081:8081 --memory=1.0g --cpus=1 sonjoykp/ml-based-malware-defender:team1
docker pull sonjoykp/ml-based-malware-defender:team2
docker run -itp 8082:8082 --memory=1.0g --cpus=1 sonjoykp/ml-based-malware-defender:team2
docker pull vva2/defender:1.0.2
docker run -itp 8080:8080 --memory=1.0g --cpus=1 vva2/defender:1.0.2
docker pull sonjoykp/ml-based-malware-defender:team4
docker run -itp 8084:8084 --memory=1.0g --cpus=1 sonjoykp/ml-based-malware-defender:team4
docker pull sonjoykp/ml-based-malware-defender:team5
docker run -itp 8085:8085 --memory=1.0g --cpus=1 sonjoykp/ml-based-malware-defender:team5
docker pull sonjoykp/ml-based-malware-defender:team6
docker run -itp 8086:8086 --memory=1.0g --cpus=1 sonjoykp/ml-based-malware-defender:team6
docker pull sonjoykp/ml-based-malware-defender:team7
docker run -itp 8087:8087 --memory=1.0g --cpus=1 sonjoykp/ml-based-malware-defender:team7
python3 -m test -m /Users/skpaul/mac-tamu/malware-dataset/attack/dropped-folder -b /Users/skpaul/mac-tamu/malware-dataset/attack/benign-folder
curl -XPOST --data-binary @/Users/skpaul/mac-tamu/dataset/dataset-by-professor/datasets-2/gw1/0012 http://127.0.0.1:8080/ -H "Content-Type: application/octet-stream"