Skip to content

Commit

Permalink
REST API implementation for VertexAI Gemini models.
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 697802489
  • Loading branch information
Langfun Authors committed Nov 22, 2024
1 parent 4c906e8 commit 92ebbdf
Show file tree
Hide file tree
Showing 4 changed files with 474 additions and 16 deletions.
3 changes: 3 additions & 0 deletions langfun/core/llms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,8 @@
from langfun.core.llms.groq import GroqWhisper_Large_v3Turbo

from langfun.core.llms.vertexai import VertexAI
from langfun.core.llms.vertexai import VertexRestfulAI
from langfun.core.llms.vertexai import VertexRestfulAIGemini1_5
from langfun.core.llms.vertexai import VertexAIGemini1_5
from langfun.core.llms.vertexai import VertexAIGeminiPro1_5
from langfun.core.llms.vertexai import VertexAIGeminiPro1_5_Latest
Expand All @@ -134,6 +136,7 @@
from langfun.core.llms.vertexai import VertexAIGeminiFlash1_5_0514
from langfun.core.llms.vertexai import VertexAIGeminiPro1
from langfun.core.llms.vertexai import VertexAIGeminiPro1Vision
from langfun.core.llms.vertexai import VertexAIGeminiPro1Vision_001
from langfun.core.llms.vertexai import VertexAIPalm2
from langfun.core.llms.vertexai import VertexAIPalm2_32K
from langfun.core.llms.vertexai import VertexAICustom
Expand Down
2 changes: 1 addition & 1 deletion langfun/core/llms/rest.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ class REST(lf.LanguageModel):
api_endpoint: Annotated[
str,
'The endpoint of the REST API.'
]
] = ''

request: Annotated[
Callable[[lf.Message, lf.LMSamplingOptions], dict[str, Any]],
Expand Down
273 changes: 267 additions & 6 deletions langfun/core/llms/vertexai.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,14 @@

import langfun.core as lf
from langfun.core import modalities as lf_modalities
from langfun.core.llms import rest
import pyglove as pg

try:
# pylint: disable=g-import-not-at-top
from google import auth as google_auth
from google.auth import credentials as credentials_lib
from google.auth.transport import requests as auth_requests
import vertexai
from google.cloud.aiplatform import models as aiplatform_models
from vertexai import generative_models
Expand All @@ -32,6 +35,8 @@

Credentials = credentials_lib.Credentials
except ImportError:
google_auth = None
auth_requests = None
credentials_lib = None # pylint: disable=invalid-name
vertexai = None
generative_models = None
Expand Down Expand Up @@ -127,6 +132,12 @@
cost_per_1k_input_chars=0.000125,
cost_per_1k_output_chars=0.000375,
),
'gemini-1.0-pro-vision-001': pg.Dict(
api='gemini',
rpm=100,
cost_per_1k_input_chars=0.000125,
cost_per_1k_output_chars=0.000375,
),
# PaLM APIs.
'text-bison': pg.Dict(
api='palm',
Expand Down Expand Up @@ -449,6 +460,239 @@ def _sample_endpoint_model(self, prompt: lf.Message) -> lf.LMSamplingResult:
])


@lf.use_init_args(['model'])
class VertexRestfulAI(rest.REST):
"""Language model served on VertexAI with REST API."""

model: pg.typing.Annotated[
pg.typing.Enum(
pg.MISSING_VALUE, list(SUPPORTED_MODELS_AND_SETTINGS.keys())
),
(
'Vertex AI model name with REST API support. See '
'https://cloud.google.com/vertex-ai/generative-ai/docs/'
'model-reference/inference#supported-models'
' for details.'
),
]

project: Annotated[
str | None,
(
'Vertex AI project ID. Or set from environment variable '
'VERTEXAI_PROJECT.'
),
] = None

location: Annotated[
str | None,
(
'Vertex AI service location. Or set from environment variable '
'VERTEXAI_LOCATION.'
),
] = None

credentials: Annotated[
Credentials | None,
(
'Credentials to use. If None, the default credentials to the '
'environment will be used.'
),
] = None

supported_modalities: Annotated[
list[str],
'A list of MIME types for supported modalities'
] = []

def _on_bound(self):
super()._on_bound()
if google_auth is None:
raise ValueError(
'Please install "langfun[llm-google-vertex]" to use Vertex AI models.'
)
self._project = None
self._credentials = None

def _initialize(self):
project = self.project or os.environ.get('VERTEXAI_PROJECT', None)
if not project:
raise ValueError(
'Please specify `project` during `__init__` or set environment '
'variable `VERTEXAI_PROJECT` with your Vertex AI project ID.'
)

location = self.location or os.environ.get('VERTEXAI_LOCATION', None)
if not location:
raise ValueError(
'Please specify `location` during `__init__` or set environment '
'variable `VERTEXAI_LOCATION` with your Vertex AI service location.'
)

self._project = project
credentials = self.credentials
if credentials is None:
# Use default credentials.
credentials = google_auth.default(
scopes=['https://www.googleapis.com/auth/cloud-platform']
)
self._credentials = credentials

@property
def max_concurrency(self) -> int:
"""Returns the maximum number of concurrent requests."""
return self.rate_to_max_concurrency(
requests_per_min=SUPPORTED_MODELS_AND_SETTINGS[self.model].rpm,
tokens_per_min=0,
)

def estimate_cost(
self,
num_input_tokens: int,
num_output_tokens: int
) -> float | None:
"""Estimate the cost based on usage."""
cost_per_1k_input_chars = SUPPORTED_MODELS_AND_SETTINGS[self.model].get(
'cost_per_1k_input_chars', None
)
cost_per_1k_output_chars = SUPPORTED_MODELS_AND_SETTINGS[self.model].get(
'cost_per_1k_output_chars', None
)
if cost_per_1k_output_chars is None or cost_per_1k_input_chars is None:
return None
return (
cost_per_1k_input_chars * num_input_tokens
+ cost_per_1k_output_chars * num_output_tokens
) * AVGERAGE_CHARS_PER_TOEKN / 1000

@functools.cached_property
def _session(self):
assert self._api_initialized
assert self._credentials is not None
assert auth_requests is not None
s = auth_requests.AuthorizedSession(self._credentials)
s.headers.update(self.headers or {})
return s

@property
def headers(self):
return {
'Content-Type': 'application/json; charset=utf-8',
}

@property
def api_endpoint(self) -> str:
return (
f'https://{self.location}-aiplatform.googleapis.com/v1/projects/'
f'{self.project}/locations/{self.location}/publishers/google/'
f'models/{self.model}:generateContent'
)

def request(
self, prompt: lf.Message, sampling_options: lf.LMSamplingOptions
) -> dict[str, Any]:
request = dict(
generationConfig=self._generation_config(prompt, sampling_options)
)
request['contents'] = [self._content_from_message(prompt)]
return request

def _generation_config(
self, prompt: lf.Message, options: lf.LMSamplingOptions
) -> dict[str, Any]:
"""Returns a dict as generation config for prompt and LMSamplingOptions."""
config = dict(
temperature=options.temperature,
maxOutputTokens=options.max_tokens,
candidateCount=options.n,
topK=options.top_k,
topP=options.top_p,
stopSequences=options.stop,
seed=options.random_seed,
responseLogprobs=options.logprobs,
logprobs=options.top_logprobs,
)

if json_schema := prompt.metadata.get('json_schema'):
if not isinstance(json_schema, dict):
raise ValueError(
f'`json_schema` must be a dict, got {json_schema!r}.'
)
json_schema = pg.to_json(json_schema)
config['responseSchema'] = json_schema
config['responseMimeType'] = 'application/json'
prompt.metadata.formatted_text = (
prompt.text
+ '\n\n [RESPONSE FORMAT (not part of prompt)]\n'
+ pg.to_json_str(json_schema, json_indent=2)
)
return config

def _content_from_message(self, prompt: lf.Message) -> dict[str, Any]:
"""Gets generation content from langfun message."""
parts = []
for lf_chunk in prompt.chunk():
if isinstance(lf_chunk, str):
parts.append({'text': lf_chunk})
elif isinstance(lf_chunk, lf_modalities.Mime):
try:
modalities = lf_chunk.make_compatible(
self.supported_modalities + ['text/plain']
)
if isinstance(modalities, lf_modalities.Mime):
modalities = [modalities]
for modality in modalities:
if modality.is_text:
parts.append({'text': modality.to_text()})
else:
parts.append({
'bytes': modality.to_bytes(),
'mimeType': modality.mime_type,
})
except lf.ModalityError as e:
raise lf.ModalityError(f'Unsupported modality: {lf_chunk!r}') from e
else:
raise lf.ModalityError(f'Unsupported modality: {lf_chunk!r}')
return dict(role='user', parts=parts)

def result(self, json: dict[str, Any]) -> lf.LMSamplingResult:
messages = [
self._message_from_content_parts(candidate['content']['parts'])
for candidate in json['candidates']
]
usage = json['usageMetadata']
input_tokens = usage['promptTokenCount']
output_tokens = usage['candidatesTokenCount']
return lf.LMSamplingResult(
[lf.LMSample(message) for message in messages],
usage=lf.LMSamplingUsage(
prompt_tokens=input_tokens,
completion_tokens=output_tokens,
total_tokens=input_tokens + output_tokens,
estimated_cost=self.estimate_cost(
num_input_tokens=input_tokens,
num_output_tokens=output_tokens,
),
),
)

def _message_from_content_parts(
self, parts: list[dict[str, Any]]
) -> lf.Message:
"""Converts Vertex AI's content parts protocol to message."""
chunks = []
for part in parts:
if text_part := part.get('text'):
chunks.append(text_part)
elif inline_part := part.get('inlineData'):
chunks.append(
lf_modalities.Mime(inline_part['data'], inline_part['mimeType'])
)
else:
raise ValueError(f'Unsupported part: {part}')
return lf.AIMessage.from_chunks(chunks)


class _ModelHub:
"""Vertex AI model hub."""

Expand Down Expand Up @@ -547,13 +791,21 @@ class VertexAIGeminiPro1_5(VertexAIGemini1_5): # pylint: disable=invalid-name
model = 'gemini-1.5-pro'


class VertexAIGeminiPro1_5_002(VertexAIGemini1_5): # pylint: disable=invalid-name
class VertexRestfulAIGemini1_5(VertexRestfulAI): # pylint: disable=invalid-name
"""Vertex AI Gemini 1.5 model with REST API."""

supported_modalities: pg.typing.List(str).freeze( # pytype: disable=invalid-annotation
_DOCUMENT_TYPES + _IMAGE_TYPES + _AUDIO_TYPES + _VIDEO_TYPES
)


class VertexAIGeminiPro1_5_002(VertexRestfulAIGemini1_5): # pylint: disable=invalid-name
"""Vertex AI Gemini 1.5 Pro model."""

model = 'gemini-1.5-pro-002'


class VertexAIGeminiPro1_5_001(VertexAIGemini1_5): # pylint: disable=invalid-name
class VertexAIGeminiPro1_5_001(VertexRestfulAIGemini1_5): # pylint: disable=invalid-name
"""Vertex AI Gemini 1.5 Pro model."""

model = 'gemini-1.5-pro-001'
Expand Down Expand Up @@ -583,13 +835,13 @@ class VertexAIGeminiFlash1_5(VertexAIGemini1_5): # pylint: disable=invalid-name
model = 'gemini-1.5-flash'


class VertexAIGeminiFlash1_5_002(VertexAIGemini1_5): # pylint: disable=invalid-name
class VertexAIGeminiFlash1_5_002(VertexRestfulAIGemini1_5): # pylint: disable=invalid-name
"""Vertex AI Gemini 1.5 Flash model."""

model = 'gemini-1.5-flash-002'


class VertexAIGeminiFlash1_5_001(VertexAIGemini1_5): # pylint: disable=invalid-name
class VertexAIGeminiFlash1_5_001(VertexRestfulAIGemini1_5): # pylint: disable=invalid-name
"""Vertex AI Gemini 1.5 Flash model."""

model = 'gemini-1.5-flash-001'
Expand All @@ -601,21 +853,30 @@ class VertexAIGeminiFlash1_5_0514(VertexAIGemini1_5): # pylint: disable=invalid
model = 'gemini-1.5-flash-preview-0514'


class VertexAIGeminiPro1(VertexAI): # pylint: disable=invalid-name
class VertexAIGeminiPro1(VertexRestfulAI): # pylint: disable=invalid-name
"""Vertex AI Gemini 1.0 Pro model."""

model = 'gemini-1.0-pro'


class VertexAIGeminiPro1Vision(VertexAI): # pylint: disable=invalid-name
"""Vertex AI Gemini 1.0 Pro model."""
"""Vertex AI Gemini 1.0 Pro Vision model."""

model = 'gemini-1.0-pro-vision'
supported_modalities: pg.typing.List(str).freeze( # pytype: disable=invalid-annotation
_IMAGE_TYPES + _VIDEO_TYPES
)


class VertexAIGeminiPro1Vision_001(VertexRestfulAI): # pylint: disable=invalid-name
"""Vertex AI Gemini 1.0 Pro Vision model with REST API."""

model = 'gemini-1.0-pro-vision-001'
supported_modalities: pg.typing.List(str).freeze( # pytype: disable=invalid-annotation
_IMAGE_TYPES + _VIDEO_TYPES
)


class VertexAIPalm2(VertexAI): # pylint: disable=invalid-name
"""Vertex AI PaLM2 text generation model."""

Expand Down
Loading

0 comments on commit 92ebbdf

Please sign in to comment.