Skip to content
This repository has been archived by the owner on Sep 3, 2022. It is now read-only.

Commit

Permalink
Switching to Tensorflow 1.5 (#1941)
Browse files Browse the repository at this point in the history
* Switching to Tensorflow 1.5

Updating to CUDA 9 and cuDNN v7 for GPU images as that version is
required by TF 1.5, this has the additional benefit of adding support
for V100 (Volta) GPUs.
  • Loading branch information
chmeyers authored Feb 5, 2018
1 parent eecbdf6 commit 37a2206
Show file tree
Hide file tree
Showing 4 changed files with 10 additions and 10 deletions.
6 changes: 3 additions & 3 deletions containers/base/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
# We use different base images for GPU vs CPU Dockerfiles, so we expect
# that the appropriate image is pulled and tagged locally.
# CPU should use ubuntu:16.04
# and GPU uses nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04
# and GPU uses nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04
FROM datalab-external-base-image
MAINTAINER Google Cloud DataLab

Expand Down Expand Up @@ -89,7 +89,7 @@ RUN echo "deb-src http://ftp.us.debian.org/debian testing main" >> /etc/apt/sour
pip install -U --upgrade-strategy only-if-needed --no-cache-dir pillow==3.4.1 && \
pip install -U --upgrade-strategy only-if-needed --no-cache-dir google-cloud-dataflow==2.0.0 && \
pip install -U --upgrade-strategy only-if-needed --no-cache-dir h5py==2.7.1 && \
pip install -U --upgrade-strategy only-if-needed --no-cache-dir tensorflow==1.4.1 && \
pip install -U --upgrade-strategy only-if-needed --no-cache-dir tensorflow==1.5.0 && \
pip install -U --upgrade-strategy only-if-needed --no-cache-dir python-snappy==0.5.1 && \
pip install -U --upgrade-strategy only-if-needed --no-cache-dir xgboost==0.6a2 && \
find /usr/local/lib/python2.7 -type d -name tests | xargs rm -rf && \
Expand Down Expand Up @@ -141,7 +141,7 @@ RUN echo "deb-src http://ftp.us.debian.org/debian testing main" >> /etc/apt/sour
pip3 install -U --upgrade-strategy only-if-needed --no-cache-dir bs4==0.0.1 && \
pip3 install -U --upgrade-strategy only-if-needed --no-cache-dir crcmod==1.7 && \
pip3 install -U --upgrade-strategy only-if-needed --no-cache-dir pillow==3.4.1 && \
pip3 install -U --upgrade-strategy only-if-needed --no-cache-dir tensorflow==1.4.1 && \
pip3 install -U --upgrade-strategy only-if-needed --no-cache-dir tensorflow==1.5.0 && \
pip3 install -U --upgrade-strategy only-if-needed --no-cache-dir python-snappy==0.5.1 && \
pip3 install -U --upgrade-strategy only-if-needed --no-cache-dir xgboost==0.6a2 && \
# Install IPython related packages with no-deps, to ensure that we don't
Expand Down
4 changes: 2 additions & 2 deletions containers/base/Dockerfile.gpu
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ FROM datalab-core-gpu
MAINTAINER Google Cloud DataLab

# Download and Install GPU specific packages
RUN pip install -U --upgrade-strategy only-if-needed --no-cache-dir tensorflow-gpu==1.4.1 tflearn h5py && \
pip3 install -U --upgrade-strategy only-if-needed --no-cache-dir tensorflow-gpu==1.4.1 tflearn h5py
RUN pip install -U --upgrade-strategy only-if-needed --no-cache-dir tensorflow-gpu==1.5.0 tflearn h5py && \
pip3 install -U --upgrade-strategy only-if-needed --no-cache-dir tensorflow-gpu==1.5.0 tflearn h5py


6 changes: 3 additions & 3 deletions containers/base/build.gpu.sh
Original file line number Diff line number Diff line change
Expand Up @@ -32,11 +32,11 @@ fi

trap 'rm -rf pydatalab' exit

docker pull nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04
docker pull nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04
# Docker tag flags changed in an incompatible way between versions.
# The Datalab Jenkins build still uses the old one, so try it both ways.
if ! $(docker tag -f nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04 datalab-external-base-image); then
docker tag nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04 datalab-external-base-image
if ! $(docker tag -f nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04 datalab-external-base-image); then
docker tag nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04 datalab-external-base-image
fi
docker build ${DOCKER_BUILD_ARGS} -t datalab-core-gpu .
docker build ${DOCKER_BUILD_ARGS} -f Dockerfile.gpu -t datalab-base-gpu .
4 changes: 2 additions & 2 deletions tools/release/cloudbuild.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -66,10 +66,10 @@ steps:

## Second, we build the GPU base image
- name: 'gcr.io/cloud-builders/docker'
args: ['pull', 'nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04']
args: ['pull', 'nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04']
id: 'pullNvidiaUbuntu'
- name: 'gcr.io/cloud-builders/docker'
args: ['tag', 'nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04', 'datalab-external-base-image']
args: ['tag', 'nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04', 'datalab-external-base-image']
id: 'tagNvidiaUbuntu'
waitFor: ['buildBase', 'pullNvidiaUbuntu']
- name: 'gcr.io/cloud-builders/docker'
Expand Down

0 comments on commit 37a2206

Please sign in to comment.