-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
208 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
"""Weighted ORA.""" | ||
|
||
import pickle | ||
from functools import lru_cache | ||
from typing import Iterable, List, Mapping, Tuple | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import pystow | ||
from scipy.stats import fisher_exact | ||
|
||
from indra_cogex.client.enrichment.discrete import EXAMPLE_GENE_IDS, count_human_genes | ||
from indra_cogex.client.neo4j_client import Neo4jClient | ||
|
||
ENTITY_TO_TARGETS_CYPHER = """\ | ||
MATCH (regulator:BioEntity)-[r:indra_rel]->(gene:BioEntity) | ||
WHERE | ||
gene.id STARTS WITH "hgnc" // Collecting human genes only | ||
AND r.stmt_type <> "Complex" // Ignore complexes since they are non-directional | ||
AND NOT regulator.id STARTS WITH "uniprot" // This is a simple way to ignore non-human proteins | ||
RETURN | ||
regulator.id, | ||
regulator.name, | ||
collect({gene:gene.id, evidence_count:r.evidence_count}) | ||
""" | ||
|
||
TEST_RESULTS_PATH = pystow.join("indra", "cogex", name="weighted_ora_test_results.tsv") | ||
|
||
|
||
@lru_cache(maxsize=1) | ||
def _get_data( | ||
*, | ||
client: Neo4jClient, | ||
reload: bool = False, | ||
cutoff: int = 1, | ||
) -> List[Tuple[str, str, Mapping[str, int]]]: | ||
cache_path = pystow.join( | ||
"indra", "cogex", name=f"weighted_ora_test_{cutoff:03d}.pkl" | ||
) | ||
if cache_path.exists() and not reload: | ||
with cache_path.open("rb") as file: | ||
return pickle.load(file) | ||
rv = [ | ||
( | ||
curie, | ||
name, | ||
{ | ||
collection_row["gene"]: collection_row["evidence_count"] | ||
for collection_row in collection_rows | ||
if cutoff <= collection_row["evidence_count"] | ||
}, | ||
) | ||
for curie, name, collection_rows in client.query_tx(ENTITY_TO_TARGETS_CYPHER) | ||
] | ||
with cache_path.open("wb") as file: | ||
pickle.dump(rv, file, protocol=pickle.HIGHEST_PROTOCOL) | ||
return rv | ||
|
||
|
||
def indra_upstream_weighted_ora( | ||
gene_ids: Iterable[str], | ||
*, | ||
client: Neo4jClient, | ||
minimum_evidence_count: int = 1, | ||
): | ||
gene_universe = count_human_genes(client=client) | ||
query_weights = { | ||
# TODO need some kind of pre-calculated global adjustment here | ||
gene_id: 1 | ||
for gene_id in gene_ids | ||
} | ||
rows = [] | ||
debug_rows = [] | ||
for curie, name, pathway_weights in _get_data(client=client): | ||
# print(pathway_curie, pathway_name) | ||
# print(pathway_weights) | ||
# The weight for all remaining pathways is estimated by this. | ||
# Lots of room for improvemnt here. Maybe use label smoothing ideas? | ||
estimated_average_weight = sum(pathway_weights.values()) / gene_universe | ||
print(curie, estimated_average_weight) | ||
intersection = sum( | ||
pathway_weights[gene_id] | ||
for gene_id in set(query_weights).intersection(pathway_weights) | ||
) | ||
pathway_minus_query = sum( | ||
pathway_weights[gene_id] | ||
for gene_id in set(pathway_weights).difference(query_weights) | ||
) | ||
query_minus_pathway = sum( | ||
estimated_average_weight | ||
for _ in set(query_weights).difference(pathway_weights) | ||
) | ||
union = sum((intersection, pathway_minus_query, query_minus_pathway)) | ||
total = gene_universe * estimated_average_weight | ||
bottom_right = total - union | ||
table = np.array( | ||
[ | ||
[ | ||
intersection, | ||
query_minus_pathway, | ||
], | ||
[ | ||
pathway_minus_query, | ||
bottom_right, | ||
], | ||
] | ||
) | ||
debug_rows.append( | ||
( | ||
curie, | ||
intersection, | ||
estimated_average_weight, | ||
query_minus_pathway, | ||
pathway_minus_query, | ||
union, | ||
total, | ||
bottom_right, | ||
) | ||
) | ||
_, pvalue = fisher_exact(table, alternative="greater") | ||
rows.append((curie, name, pvalue)) | ||
|
||
df = pd.DataFrame(rows, columns=["curie", "name", "p"]).sort_values( | ||
"p", ascending=True | ||
) | ||
df["mlp"] = -np.log10(df["p"]) | ||
return df | ||
|
||
|
||
def indra_upstream_weighted_ora( | ||
gene_ids: Iterable[str], | ||
*, | ||
client: Neo4jClient, | ||
minimum_evidence_count: int = 1, | ||
): | ||
gene_universe = count_human_genes(client=client) | ||
query_weights = { | ||
# TODO need some kind of pre-calculated global adjustment here | ||
gene_id: 1 | ||
for gene_id in gene_ids | ||
} | ||
rows = [] | ||
debug_rows = [] | ||
for curie, name, pathway_weights in _get_data(client=client): | ||
estimated_average_weight = np.mean( | ||
np.fromiter(pathway_weights.values(), dtype=int) | ||
).item() | ||
print(curie, estimated_average_weight) | ||
intersection = sum( | ||
pathway_weights[gene_id] | ||
for gene_id in set(query_weights).intersection(pathway_weights) | ||
) | ||
pathway_minus_query = sum( | ||
pathway_weights[gene_id] | ||
for gene_id in set(pathway_weights).difference(query_weights) | ||
) | ||
query_minus_pathway = sum( | ||
estimated_average_weight | ||
for _ in set(query_weights).difference(pathway_weights) | ||
) | ||
union = sum((intersection, pathway_minus_query, query_minus_pathway)) | ||
total = gene_universe * estimated_average_weight | ||
bottom_right = total - union | ||
table = np.array( | ||
[ | ||
[ | ||
intersection, | ||
query_minus_pathway, | ||
], | ||
[ | ||
pathway_minus_query, | ||
bottom_right, | ||
], | ||
] | ||
) | ||
debug_rows.append( | ||
( | ||
curie, | ||
intersection, | ||
estimated_average_weight, | ||
query_minus_pathway, | ||
pathway_minus_query, | ||
union, | ||
total, | ||
bottom_right, | ||
) | ||
) | ||
_, pvalue = fisher_exact(table, alternative="greater") | ||
rows.append((curie, name, pvalue)) | ||
|
||
df = pd.DataFrame(rows, columns=["curie", "name", "p"]).sort_values( | ||
"p", ascending=True | ||
) | ||
df["mlp"] = -np.log10(df["p"]) | ||
return df | ||
|
||
|
||
def _main(): | ||
client = Neo4jClient() | ||
rv = indra_upstream_weighted_ora(gene_ids=EXAMPLE_GENE_IDS, client=client) | ||
rv.to_csv(TEST_RESULTS_PATH, sep="\t", index=False) | ||
print(TEST_RESULTS_PATH) | ||
|
||
|
||
if __name__ == "__main__": | ||
_main() |