Shape-biased Texture Agnostic Representations for Improved Textureless and Metallic Object Detection and 6D Pose Estimation
- To generate the randomized texturing dataset in the BOP format use our rendering scripts provided in ./blenderproc_rendering
- to use the rendering scripts, Blenderproc is necessary: https://github.com/DLR-RM/BlenderProc.git
- copy & paste the scripts to /Blenderproc/examples/datasets/bop_challenge
- and execute e.g. with:
python rerun.py run examples/datasets/bop_challenge/main_tless_random_texture.py ../datasets resources/cc_textures examples/datasets/bop_challenge/output --num_scenes=1000
We used the following list of algorithms:
- MMDetection: https://github.com/open-mmlab/mmdetection
- Pix2Pose: https://github.com/kirumang/Pix2Pose
- GDR-Net: https://github.com/THU-DA-6D-Pose-Group/GDR-Net