Skip to content

houstondatavis/data-jam-february-2017

Repository files navigation

Houston Hobby Airport data

For this month's data jam, we will be working with data from Monday at the Houston Hobby airport. This data is sourced from FlightAware's API.

We have the data available in csv, each in their respective directories.

Data

The data are found in the following files:

  1. weather.csv: weather.csv -- Weather at the airport for the time-period
Column Description
airport Airport code; will be 'KHOU' for this dataset
time Epoch time (see here for more info)
cloud_friendly Cloudy/Clear/Etc.
cloud_altitude Height of clouds (99999 if Clear)
cloud_type Abbreviated Cloud description
conditions None
pressure barometric pressure (inHg)
temp_air air temperature (Celsius)
temp_dewpoint dewpoint (Celsius)
temp_relhum relative humidity
visibility visibility range (statute miles)
wind_friendly e.g. 'Windy'
wind_direction wind direction (knots); 360 means true north
wind_speed wind speeds (knots)
wind_speed_gust gust speeds (knots)
raw_data METAR data used by pilots, e.g.'KIAH 250453Z 36015G22KT 10SM CLR 16/04 A2995 RMK AO2 SLP142 T01610044'
  1. flights.csv: flights.csv -- Flight-specific data
Column Description
flight_id unique flight id string
ident 'ANA7211'
actual_ident 'UAL128'
departuretime Epoch time (see here for more info)
arrivaltime Epoch time (see here for more info)
origin Origin airport code
destination Destination airport code
aircrafttype Aircraft type (e.g. 'B787')
meal_service 'Business: Dinner / Economy: Dinner'
seats_cabin_first number of passenger seats avail. on flight in first class
seats_cabin_business number of passenger seats avail. on flight in business class
seats_cabin_coach number of passenger seats avail. on flight in coach class
  1. routes.csv: flights.csv -- Flight-specific route plan data
Column Description
flight_id unique flight id string
order 1
name e.g. 'KAYEX'
type 'Waypoint' -- or 'Origin Airport' or 'Reporting Point' or 'VOR-TAC (NAVAID)' or 'Destination Airport' or probably some others
latitude e.g. 36.4875
longitude e.g. -120.9478611
  1. tracks.csv: flights.csv -- Flight-specific location tracking data
Column Description
flight_id unique flight id string
timestamp Epoch time (see here for more info)
latitude e.g. 37.63875
longitude e.g. -122.3621
groundspeed ground speed (knots)
altitude altitude (hundreds of feet)
altitudeStatus None
updateType e.g. 'TA'
altitudeChange e.g. 'C'

How was the data gathered?

code

Quick Load

R

make_csv_url <- function(name){
  url <- paste('https://raw.githubusercontent.com/houstondatavis/data-jam-february-2017/data-pipeline/', name, '.csv', sep='')

  return(url)
}

flights <- read.csv(make_csv_url('flights'))

routes <- read.csv(make_csv_url('routes'))

tracks <- read.csv(make_csv_url('tracks'))

weather <- read.csv(make_csv_url('weather'))

Python

# http://stackoverflow.com/questions/32400867/pandas-read-csv-from-url#answer-32400969

import pandas as pd
import io
import requests

def make_csv_url(name):
  return "https://raw.githubusercontent.com/houstondatavis/data-jam-february-2017/data-pipeline/" + name + ".csv"

flights = pd.read_csv(
  io.StringIO(
    requests.get(make_csv_url('flights')).content.decode('utf-8')
  )
)

routes = pd.read_csv(
  io.StringIO(
    requests.get(make_csv_url('routes')).content.decode('utf-8')
  )
)

tracks = pd.read_csv(
  io.StringIO(
    requests.get(make_csv_url('tracks')).content.decode('utf-8')
  )
)

weather = pd.read_csv(
  io.StringIO(
    requests.get(make_csv_url('weather')).content.decode('utf-8')
  )
)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •