Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs(zh-cn): Reviewed 04_the-transformer-architecture.srt #504

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 36 additions & 35 deletions subtitles/zh-CN/04_the-transformer-architecture.srt
Original file line number Diff line number Diff line change
@@ -1,21 +1,21 @@
1
00:00:00,000 --> 00:00:02,750
徽标呼啸而过
logo 闪过
(logo whooshing)

2
00:00:05,010 --> 00:00:07,323
- 让我们 Transformer 的架构。
- 今天我们来学习 Transformer 的架构。
- Let's study the transformer architecture.

3
00:00:09,150 --> 00:00:12,030
该视频是编码器的介绍视频,
本视频是介绍编码器、解码器
This video is the introductory video to the encoders,

4
00:00:12,030 --> 00:00:15,510
解码器和编码器 - 解码器系列视频
编器-解码器的系列视频
decoders, and encoder-decoder series of videos.

5
Expand All @@ -25,12 +25,12 @@ In this series,

6
00:00:16,343 --> 00:00:18,900
我们将尝试了解是什么构成了 transformer 网络
我们将尝试了解 transformer 网络是怎么构成的
we'll try to understand what makes a transformer network,

7
00:00:18,900 --> 00:00:22,770
我们将尝试用简单、高层次的术语来解释它
我们将尝试用简单、高层次的术语来进行解释
and we'll try to explain it in simple, high-level terms.

8
Expand All @@ -40,12 +40,12 @@ No advanced understanding of neural networks is necessary,

9
00:00:25,800 --> 00:00:29,343
但了解基本向量和张量可能会有所帮助
但关于基本向量和张量的知识可能会有所帮助
but an understanding of basic vectors and tensors may help.

10
00:00:32,250 --> 00:00:33,270
开始
让我们开始吧
To get started,

11
Expand All @@ -55,13 +55,13 @@ we'll take up this diagram

12
00:00:34,530 --> 00:00:36,630
从原来的变压器纸,
它来自 Vaswani 等人发表的原始 transformer 论文
from the original transformer paper,

13
00:00:36,630 --> 00:00:40,140
Vaswani 等人题为 “注意力就是你所需要的”。
entitled "Attention Is All You Need", by Vaswani et al.
题为 “注意力就是您所需要的(Attention Is All You Need)”。
entitled "", by Vaswani et al.

14
00:00:40,140 --> 00:00:41,010
Expand All @@ -70,12 +70,12 @@ As we'll see here,

15
00:00:41,010 --> 00:00:42,780
我们只能利用它的一部分,
根据我们正在尝试做的事情
we can leverage only some parts of it,

16
00:00:42,780 --> 00:00:44,630
根据我们正在尝试做的事情
我们只能利用它的一部分
according to what we're trying to do.

17
Expand All @@ -85,17 +85,17 @@ We want to dive into the specific layers,

18
00:00:47,610 --> 00:00:48,990
建立那个架构
来建立那个架构
building up that architecture,

19
00:00:48,990 --> 00:00:51,390
但我们会尝试理解不同的方式
但我们会尝试理解使用不同的方式
but we'll try to understand the different ways

20
00:00:51,390 --> 00:00:52,893
可以使用此架构
使用此架构
this architecture can be used.

21
Expand Down Expand Up @@ -125,7 +125,7 @@ These two can be used together,

26
00:01:03,330 --> 00:01:05,330
但它们也可以独立使用
也可以独立使用
but they can also be used independently.

27
Expand All @@ -140,12 +140,12 @@ The encoder accepts inputs that represent text.

29
00:01:11,460 --> 00:01:13,620
它转换这个文本,这些词,
将文本中的文字
It converts this text, these words,

30
00:01:13,620 --> 00:01:15,675
成数值表示
转换成数值表示
into numerical representations.

31
Expand All @@ -155,12 +155,12 @@ These numerical representations

32
00:01:17,400 --> 00:01:20,460
也可以称为嵌入或特征
也可以称为嵌入(embeddings)或特征(features)
can also be called embeddings, or features.

33
00:01:20,460 --> 00:01:23,100
我们会看到它使用了 self-attention 机制
我们会看到它使用了自注意力(self-attention机制
We'll see that it uses the self-attention mechanism

34
Expand All @@ -170,17 +170,17 @@ as its main component.

35
00:01:25,500 --> 00:01:27,120
我们建议你查看视频
我们建议您查看
We recommend you check out the video

36
00:01:27,120 --> 00:01:29,700
关于编码器具体要了解
有关编码器的视频
on encoders specifically to understand

37
00:01:29,700 --> 00:01:31,680
这个数字表示是什么
特别是要了解这个数字表示是什么
what is this numerical representation,

38
Expand All @@ -205,7 +205,7 @@ The decoder is similar to the encoder.

42
00:01:42,780 --> 00:01:45,630
它还可以接受文本输入
它也可以接受文本输入
It can also accept text inputs.

43
Expand All @@ -215,7 +215,7 @@ It uses a similar mechanism as the encoder,

44
00:01:48,210 --> 00:01:51,150
这也是掩蔽的自我关注
掩蔽的自我注意力
which is the masked self-attention as well.

45
Expand All @@ -235,17 +235,17 @@ and is traditionally used in an auto-regressive manner.

48
00:01:58,590 --> 00:02:01,650
在这里,我们也建议你查看有关解码器的视频
在这里,我们也建议您查看有关解码器的视频
Here too, we recommend you check out the video on decoders

49
00:02:01,650 --> 00:02:04,000
特别是要了解所有这些是如何工作的
特别是要了解这些是如何工作的
especially to understand how all of this works.

50
00:02:06,810 --> 00:02:07,890
结合两部分
结合这两部分
Combining the two parts

51
Expand All @@ -270,7 +270,7 @@ and computes a high-level representation of those inputs.

55
00:02:17,850 --> 00:02:20,252
然后将这些输出传递给解码器
然后将这些作为输出传递给解码器
These outputs are then passed to the decoder.

56
Expand All @@ -295,26 +295,27 @@ which it will re-use in future iterations,

60
00:02:30,248 --> 00:02:32,662
因此,术语自回归
这也是为什么叫其自回归
hence the term, auto-regressive.

61
00:02:32,662 --> 00:02:34,740
最后,为了理解
最后,为了全面理解
Finally, to get an understanding

62
00:02:34,740 --> 00:02:36,690
编码器 - 解码器作为一个整体,
编码器 - 解码器
of the encoder-decoders as a whole,

63
00:02:36,690 --> 00:02:39,670
我们建议你查看有关编码器 - 解码器的视频。
我们建议您查看有关编码器 - 解码器的视频。
we recommend you check out the video on encoder-decoders.

64
00:02:39,670 --> 00:02:42,420
(徽标呼啸而过)
(logo 再一次闪过)

(logo whooshing)