- a simple CRF layer for tensorflow 2 keras
- support keras masking
$ pip install tf2crf
tensorflow >= 2.1.0 Recommmend use the latest tensorflow-addons which is compatiable with your tf version.
from tf2CRF import CRF
from tensorflow.keras.layers import Input, Embedding, Bidirectional, GRU, Dense
from tensorflow.keras.models import Model
inputs = Input(shape=(None,), dtype='int32')
output = Embedding(100, 40, trainable=True, mask_zero=True)(inputs)
output = Bidirectional(GRU(64, return_sequences=True))(output)
output = Dense(9, activation=None)(output)
crf = CRF(dtype='float32')
output = crf(output)
model = Model(inputs, output)
model.compile(loss=crf.loss, optimizer='adam', metrics=[crf.accuracy])
x = [[5, 2, 3] * 3] * 10
y = [[1, 2, 3] * 3] * 10
model.fit(x=x, y=y, epochs=2, batch_size=2)
model.save('model')
Currently these is a bug in tensorflow-addons.text.crf, which causes a dtype error when using miex precision. This bug has been fixed in master branch, but is not released. so if you want to use mixed precision training. You need to pip install tfa-nighly instead.
from tf2CRF import CRF
from tensorflow.keras.layers import Input, Embedding, Bidirectional, GRU, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.mixed_precision import experimental as mixed_precision
policy = mixed_precision.Policy('mixed_float16')
mixed_precision.set_policy(policy)
inputs = Input(shape=(None,), dtype='int32')
output = Embedding(100, 40, trainable=True, mask_zero=True)(inputs)
output = Bidirectional(GRU(64, return_sequences=True))(output)
output = Dense(9, activation=None)(output)
crf = CRF(dtype='float32')
output = crf(output)
model = Model(inputs, output)
model.compile(loss=crf.loss, optimizer='adam', metrics=[crf.accuracy])
x = [[5, 2, 3] * 3] * 10
y = [[1, 2, 3] * 3] * 10
model.fit(x=x, y=y, epochs=2, batch_size=2)
model.save('model')