Skip to content

Crescendo for single-gene correction in single-cell RNA-sequencing data

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

immunogenomics/crescendo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Crescendo

Crescendo for single-gene correction in single-cell RNA-sequencing data

DOI

Implementation of the Crescendo algorithm, which allows investigators to remove the effects of confounding factors by directly correcting gene expression count data.

Installation

Install the current version of Crescendo from GitHub with:

# install.packages("devtools")
devtools::install_github("immunogenomics/crescendo")

Usage/Demos

Quick-start code

The following code uses Crescendo to correct gene expression from a public 10X dataset containing 3 batches (3pV1, 3pV2, and 5p)

library(crescendo)

# Load dataset with metadata, raw gene counts, and Harmony clusters (result from running the Harmony algorithm)
obj <- readRDS(system.file("extdata", "pbmc_4gene_obj.rds", package = "crescendo"))

# Set which genes to correct and parameters for coorrection
batch_var <- 'batch'
genes_use <- c('TRAC', 'MS4A1')
prop <- 0.05
min_cells <- 50

mc.cores <- NULL
lambda <- NULL
alpha <- 0

# Run Crescendo
corr_counts <- crescendo(
    Ycounts = obj$exprs_raw,
    meta_data = obj$meta_data,
    R = obj$R,
    batch_var = 'batch',
    genes_use = genes_use,
    prop = prop,
    min_cells = min_cells,
    lambda = lambda,
    alpha = alpha,
    mc.cores = mc.cores,
    return_obj = FALSE,
    verbose = FALSE
    # verbose = TRUE
)

About

Crescendo for single-gene correction in single-cell RNA-sequencing data

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published