OO-dMVMT: A Deep Multi-view Multi-task Classification Framework for Real-time 3D Hand Gesture Classification and Segmentation
Official implementation of the paper "OO-dMVMT: A Deep Multi-view Multi-task Classification Framework for Real-time 3D Hand Gesture Classification and Segmentation" Paper
-
Create
data/
if not exists -
Create
output/
if not exists -
Download dataset and put in
data/shrec22
anddata/shrec19
. Or create symbolic linkln -s </abs/path/of/data> ./
- In the terminal, run the following command:
./train_dMVMT.sh
- In case you want to specify a different configuration, edit the
cfg_path
argument insidetrain_dMVMT.sh
- The checkpoint will be saved in
output/<exp_name>/best_classifier_model.pth
- Open
eval/eval_shrec22.py
- Specify a list of folders containing the model checkpoints you wish to evaluate and the list of corresponding config files (line 178) DEFAULT:
tests=['output/train_shrec22_oo-dmvmt']
,cfg_paths=['configs/eval_OO-dMVMT.yaml']
- From the project root, run the following command in a terminal:
PYTHONPATH=. python eval_shrec22.py
- The output file will be saved in
<test_folder>/result.txt
- Evaluate the result using the official script from the hosts of the Shrec22 challenge
All the hyperparameters used for training/testing are contained in .yaml
files in the configs
folder
train_OO-dMVMT.yaml
contains the configuration for training our OO-dMVMT model.
experiment_name
specify the name of the folder the model checkpoint will be saved in e.g.output/<exp_name>/best_classifier_model.py
save_metrics
specifies whether to save metrics like confusion matrices and classification results (in numpy)do_sdn
enables the SDN head during training (DEFAULT: True)do_gs_ge
enables the GS/GE heads during training (DEFAULT: True)do_gs_ge_OnOff
enables the On-Off strategy for the regression heads (DEFAULT: True)do_OnOff_skip
only train on the windows that contain a gesture start/end. (DEFAULT: False)W
the size of the window (DEFAULT: 16)calc_m
precomputes the JCD, used to speedup training (DEFAULT: True)
eval_OO-dMVMT.yaml
contains the configuration for generating the output file for the Shrec22 challenge
W
the size of the window. Must be the same used during training (DEFAULT: 16)calc_m
precomputes the JCD, used to speedup training (DEFAULT: False)
Pre-trained models are available here
If you want cite our work, please use this
@inproceedings{cunico2023oo,
title={OO-dMVMT: A Deep Multi-view Multi-task Classification Framework for Real-time 3D Hand Gesture Classification and Segmentation},
author={Cunico, Federico and Emporio, Marco and Girella, Federico and Giachetti, Andrea and Avogaro, Andrea and Cristani, Marco},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={2744--2753},
year={2023}
}