The official pytorch implementation of the paper [Real-time Controllable Denoising for Image and Video]
| Github | Page | Paper | Arxiv |
Demo_RCD_small.mp4
This implementation is based on [BasicSR]
Basic requirements:
python 3.9.12
pytorch 1.12.1
cuda 11.8
Other requirements:
pip install -r requirements.txt
python setup.py develop --no_cuda_ext
Evaluate on Nam Dataset:
Data Preparation:
- Download Nam dataset
- Crop the gt and input images into 512*512 patches and save as gt.lmdb and input.lmdb, respectively. (or download from Google Drive GT and Input)
- Edit the dataroot_lq and dataroot_gt in NAFNet-RCD-tiny.yml to the corresponding paths: /your_path/gt.lmdb and /your_path/input.lmdb
Test Nam real image noise dataset with NAFNet-RCD-tiny model, which is trained on SIDD training dataset
python basicsr/test.py --opt options/test/NAFNet-RCD-tiny.yml
Evaluate on SIDD Dataset(noise level
Data Preparation:
- Download the evaluation data (in lmdb format) SIDD_0_12
- Edit the dataroot_lq and dataroot_gt in NAFNet-RCD-tiny.yml to the corresponding paths: /your_path/gt.lmdb and /your_path/input.lmdb
Test SIDD real image noise dataset with NAFNet-RCD-tiny model
python basicsr/test.py --opt options/test/NAFNet-RCD-tiny.yml
Result structure:
Groundtruth
imageName_gt.png
Denoise levels
imageName_level_0.png imageName_level_1.png imageName_level_2.png imageName_level_3.png imageName_level_4.png
AutoTune results
imageName_res.png
Our codebase is based on the NAFNet
If you find our paper useful for your research, please consider citing our work 😊 :
@InProceedings{Zhang_2023_CVPR,
author = {Zhang, Zhaoyang and Jiang, Yitong and Shao, Wenqi and Wang, Xiaogang and Luo, Ping and Lin, Kaimo and Gu, Jinwei},
title = {Real-Time Controllable Denoising for Image and Video},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {14028-14038}
}