A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.
- Python 2.7 or 3.7
- Cookiecutter Python package >= 1.4.0: This can be installed with pip by or conda depending on how you manage your Python packages:
$ pip install cookiecutter
or
$ conda config --add channels conda-forge
$ conda install cookiecutter
cookiecutter https://github.com/jindongyang94/cookiecutter-data-science-custom.git
The directory structure of your new project looks like this:
├── LICENSE
├── Makefile <- Makefile with commands like `make setup` or `make clean`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── metadata <- Information about the tables given : Schema, Headers, etc.
│ ├── mock_data
│ │ ├── interim <- Intermediate data that has been transformed.
│ │ ├── processed <- The final, canonical data sets for modeling.
│ │ └── raw <- The original, immutable data dump.
│ └── scripts <- SQL scripts used to create the datasets
│
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks.
│ └── template.ipynb
│
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── config <- Specifications used to determine fields, parameters etc. for preprocessing,
│ │ │ modeling etc.
│ │ └── template_model_specifications.yaml
│ │
│ ├── utilities <- Scripts for common functions used. The scripts can be split into company
│ │ │ functions (functions used across all projects) and local functions (functions
│ │ │ used only in this project)
│ │ └── e.g. company_func.py
│ │ └── e.g. project_func.py
│ │
│ ├── data <- Scripts to download or generate data
│ │
│ ├── features <- Scripts to turn raw data into features for modeling : e.g. encoding, type conversion
│ │ steps.
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── train_model.py
│ │ └── predict_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
├── setup.py <- Makes project pip installable (pip install -e .) so src can be imported
│
├── tests <- Unittests, end-to-end testing etc. with mock data to check code.
│
└── .env <- Environment File to load all necessary environment variables for local testing
'''python pip install -r requirements.txt '''