Skip to content

jishnurajendran/Lattice-Boltzmann

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lattice Boltzmann simulation

https://zenodo.org/badge/99260305.svg

Lattice Boltzmann simulation of a 2D square domain with rigid barrier

"""
Lattice-Boltzmann method for fluid simulation
Simple rectangular barrier
@author: Jishnu
"""
import numpy, time, matplotlib.pyplot, matplotlib.animation

height = 80						# dimensions of lattice
width = 200
viscosity = 0.02					# viscosity
omega = 1 / (3*viscosity + 0.5)				# parameter for relaxation
u0 = 0.1						# initial and in-flow speed
f_n = 4.0/9.0						# lattice-Boltzmann weight factors
o_n   = 1.0/9.0
o_36  = 1.0/36.0
performanceData = True					# True if performance data is needed

Here we initialize the dimensions of the domain and the initial conditions of fluid flow. We will choose steady flow and initialise the density and velocity arrays.

# Initialize arrays --steady rightward flow:
n0 = f_n * (numpy.ones((height,width)) - 1.5*u0**2)	# particle densities along 9 directions
nN = o_n * (numpy.ones((height,width)) - 1.5*u0**2)
nS = o_n * (numpy.ones((height,width)) - 1.5*u0**2)
nE = o_n * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nW = o_n * (numpy.ones((height,width)) - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nNE = o_36 * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nSE = o_36 * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nNW = o_36 * (numpy.ones((height,width)) - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nSW = o_36 * (numpy.ones((height,width)) - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
rho = n0 + nN + nS + nE + nW + nNE + nSE + nNW + nSW			# macroscopic density
ux = (nE + nNE + nSE - nW - nNW - nSW) / rho				# macroscopic x velocity
uy = (nN + nNE + nNW - nS - nSE - nSW) / rho				# macroscopic y velocity

Effects of a Barrier in a steady flow

We choose a simple rectangle barrier in the domain.

barrier = numpy.zeros((height,width), bool)						# True wherever there's a barrier
barrier[(height//2)-8:(height//2)+8, (height//2)-4:(height//2)+4] = True			# simple linear barrier
barrierN = numpy.roll(barrier,  1, axis=0)						# sites just north of barriers
barrierS = numpy.roll(barrier, -1, axis=0)						# sites just south of barriers
barrierE = numpy.roll(barrier,  1, axis=1)
barrierW = numpy.roll(barrier, -1, axis=1)
barrierNE = numpy.roll(barrierN,  1, axis=1)
barrierNW = numpy.roll(barrierN, -1, axis=1)
barrierSE = numpy.roll(barrierS,  1, axis=1)
barrierSW = numpy.roll(barrierS, -1, axis=1)

Move all particles by one step along their directions of motion (pbc):

   def stream():
	global nN, nS, nE, nW, nNE, nNW, nSE, nSW
	nN  = numpy.roll(nN,   1, axis=0)			# axis 0 is north-south; + direction is north
	nNE = numpy.roll(nNE,  1, axis=0)
	nNW = numpy.roll(nNW,  1, axis=0)
	nS  = numpy.roll(nS,  -1, axis=0)
	nSE = numpy.roll(nSE, -1, axis=0)
	nSW = numpy.roll(nSW, -1, axis=0)
	nE  = numpy.roll(nE,   1, axis=1)			# axis 1 is east-west; + direction is east
	nNE = numpy.roll(nNE,  1, axis=1)
	nSE = numpy.roll(nSE,  1, axis=1)
	nW  = numpy.roll(nW,  -1, axis=1)
	nNW = numpy.roll(nNW, -1, axis=1)
	nSW = numpy.roll(nSW, -1, axis=1)
	# Using boolean arrays to handle barrier collisions (bounce-back):
	nN[barrierN] = nS[barrier]
	nS[barrierS] = nN[barrier]
	nE[barrierE] = nW[barrier]
	nW[barrierW] = nE[barrier]
	nNE[barrierNE] = nSW[barrier]
	nNW[barrierNW] = nSE[barrier]
	nSE[barrierSE] = nNW[barrier]
	nSW[barrierSW] = nNE[barrier]
def collide():
	"""
	Calculates the collision step of the Lattice Boltzmann Method (LBM) algorithm.

	Updates the macroscopic variables `rho`, `ux`, and `uy` based on the population
	distributions `n0`, `nN`, `nS`, `nE`, `nW`, `nNE`, `nNW`, `nSE`, and `nSW`.

	Parameters:
	None

	Returns:
	None
	"""
	global rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW
	rho = n0 + nN + nS + nE + nW + nNE + nSE + nNW + nSW
	ux = (nE + nNE + nSE - nW - nNW - nSW) / rho
	uy = (nN + nNE + nNW - nS - nSE - nSW) / rho
	ux2 = ux * ux
	uy2 = uy * uy
	u2 = ux2 + uy2
	omu215 = 1 - 1.5*u2
	uxuy = ux * uy
	n0 = (1-omega)*n0 + omega * f_n * rho * omu215
	nN = (1-omega)*nN + omega * o_n * rho * (omu215 + 3*uy + 4.5*uy2)
	nS = (1-omega)*nS + omega * o_n * rho * (omu215 - 3*uy + 4.5*uy2)
	nE = (1-omega)*nE + omega * o_n * rho * (omu215 + 3*ux + 4.5*ux2)
	nW = (1-omega)*nW + omega * o_n * rho * (omu215 - 3*ux + 4.5*ux2)
	nNE = (1-omega)*nNE + omega * o_36 * rho * (omu215 + 3*(ux+uy) + 4.5*(u2+2*uxuy))
	nNW = (1-omega)*nNW + omega * o_36 * rho * (omu215 + 3*(-ux+uy) + 4.5*(u2-2*uxuy))
	nSE = (1-omega)*nSE + omega * o_36 * rho * (omu215 + 3*(ux-uy) + 4.5*(u2-2*uxuy))
	nSW = (1-omega)*nSW + omega * o_36 * rho * (omu215 + 3*(-ux-uy) + 4.5*(u2+2*uxuy))
	# Force steady rightward flow at ends
	# no need to set 0, N, and S component
	nE[:,0] = o_n * (1 + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
	nW[:,0] = o_n * (1 - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
	nNE[:,0] = o_36 * (1 + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
	nSE[:,0] = o_36 * (1 + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
	nNW[:,0] = o_36 * (1 - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
	nSW[:,0] = o_36 * (1 - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
# Compute curl of the  velocity field:
def curl(ux, uy):
	"""
	Calculates the curl of a vector field.

	Parameters:
		ux (numpy.ndarray): The x-component of the vector field.
		uy (numpy.ndarray): The y-component of the vector field.

	Returns:
		numpy.ndarray: The curl of the vector field.
	"""
	return numpy.roll(uy,-1,axis=1) - numpy.roll(uy,1,axis=1) - numpy.roll(ux,-1,axis=0) + numpy.roll(ux,1,axis=0)

Visualization of the simulation

# for animation.
theFig = matplotlib.pyplot.figure(figsize=(8,3))
fluidImage = matplotlib.pyplot.imshow(curl(ux, uy), origin='lower', norm=matplotlib.pyplot.Normalize(-.1,.1),
									cmap=matplotlib.pyplot.get_cmap('jet'), interpolation='none')
bImageArray = numpy.zeros((height, width, 4), numpy.uint8)	# an RGBA image
bImageArray[barrier,3] = 255								# set alpha=255 barrier sites only
barrierImage = matplotlib.pyplot.imshow(bImageArray, origin='lower', interpolation='none')

# Function called for each successive animation frame:
startTime = time.perf_counter()
#frameList = open('frameList.txt','w')		# file containing list of images
def nextFrame(arg):							# (arg is the frame number, which we don't need)
	global startTime
	if performanceData and (arg%100 == 0) and (arg > 0):
		endTime = time.perf_counter()
		print(  "%1.1f" % (100/(endTime-startTime)), 'frames per second' )
		startTime = endTime
	#frameName = "frame%04d.png" % arg
	#matplotlib.pyplot.savefig(frameName)
	#frameList.write(frameName + '\n')
	for step in range(15):					# adjust number of steps for smooth animation
		stream()
		collide()
	fluidImage.set_array(curl(ux, uy))
	return (fluidImage, barrierImage)		# return the figure elements to redraw

animate = matplotlib.animation.FuncAnimation(theFig, nextFrame, interval=0.5, blit=True)
matplotlib.pyplot.show()