This function has been completely rewritten and included in the piecewiseSEM package as sem.model.fits
. See updates here: https://github.com/jslefche/piecewiseSEM/
Description:
Implementation of Schielzeth and Nakagawa's R2 for generalized linear mixed effects models in R. This function improves on the r.squaredGLMM
function in the MuMIn
package by incorporting different link functions for GLMERs and also returning other useful information, such as the model specification, and additional fit criteria in the form of AIC values.
For more information, see:
Nakagawa, Shinichi, and Holger Schielzeth. "A general and simple method for obtaining R2 from
generalized linear mixed‐effects models." Methods in Ecology and Evolution 4.2 (2013): 133-142.
Johnson, Paul C.D. "Extension of Nakagawa & Schielzeth's R2GLMM to random slopes models." Methods in
Ecology and Evolution.
Version: 0.2-4 (2014-07-10)
Author: Jon Lefcheck [email protected] & Juan Sebastian Casallas
Original blog post: http://jonlefcheck.net/2013/03/13/r2-for-linear-mixed-effects-models/
####WARNING: Calculation of nested random effects in lme
objects still in beta!!
set.seed(4)
data <- data.frame(y=rnorm(100, 5, 10), y.binom=rbinom(100, 1, 0.5), y.poisson=rpois(100, 5))
data <- cbind(data,
data.frame(fixed1=data$y+c(runif(50, 0, 5),runif(50, 10, 50)),
fixed2=c("Treatment1", "Treatment2"),
rand1=LETTERS[1:2],
rand2=rep(LETTERS[23:26],each=25)) )
library(lme4)
#Linear model
mod0 <- lm(y ~ fixed1, data)
#Linear mixed effects model
mod1 <- lmer(y ~ fixed1 + (1|rand2/rand1), data)
rsquared.glmm(mod1)
mod1.1 <- lmer(y ~ fixed1 + (fixed1|rand2/rand1), data)
mod2 <- lmer(y ~ fixed1 + fixed2 + (1|rand2/rand1), data)
rsquared.glmm(list(mod0, mod1, mod1.1, mod2))
#Generalized linear mixed effects model (binomial)
mod3 <- glmer(y.binom ~ fixed1*fixed2 + (1|rand2/rand1), family="binomial", data)
mod3.prob <- update(mod3, family = binomial(link = "probit"))
rsquared.glmm(list(mod3, mod3.prob))
#Generalized linear mixed effects model (poisson)
mod4 <- glmer(y.poisson ~ fixed1*fixed2 + (1|rand2/rand1), family="poisson", data)
mod4.sqrt <- update(mod4, family = poisson(link = "sqrt"))
rsquared.glmm(list(mod4, mod4.sqrt))
#Get values for all kinds of models
(lme4.models <- rsquared.glmm(list(mod0, mod1, mod1.1, mod2, mod3, mod3.prob, mod4, mod4.sqrt)))
MuMIn::r.squaredGLMM
is similar to rsquared.glmm
but returns less information and cannot handle different kinds of link functions:
library(MuMIn)
(mumin.models <- do.call(rbind, lapply(list(mod0, mod1, mod1.1, mod2, mod3, mod3.prob, mod4,
mod4.sqrt), r.squaredGLMM)))
blme
extends lme4
, but yields different coefficients for random and fixed effects, which could explain the differences between their conditional r-squared values.
library(blme)
#Linear mixed effects model
blme.mod1 <- blmer(y ~ fixed1 + (1|rand2/rand1), data)
blme.mod1.1 <- blmer(y ~ fixed1 + (fixed1|rand2/rand1), data)
blme.mod2 <- blmer(y ~ fixed1 + fixed2 + (1|rand2/rand1), data)
#Generalized linear mixed effects model (binomial)
blme.mod3 <- bglmer(y.binom ~ fixed1*fixed2 + (1|rand2/rand1), family="binomial", data)
blme.mod3.prob <- update(blme.mod3, family = binomial(link = "probit"))
#Generalized linear mixed effects model (poisson)
blme.mod4 <- bglmer(y.poisson ~ fixed1*fixed2 + (1|rand2/rand1), family="poisson", data)
blme.mod4.sqrt <- update(blme.mod4, family = poisson(link = "sqrt"))
#Get values for all kinds of models
(blme.models <- rsquared.glmm(list(mod0, blme.mod1, blme.mod1.1, blme.mod2, blme.mod3, blme.mod3.prob,
blme.mod4,blme.mod4.sqrt)))
# blme models yield better conditional r-squared values
all.equal(lme4.models[-(1:2)], blme.models[-(1:2)])
lmerTest::lmer
extends lme4::lmer
, but their random and mixed effects coefficients are the same.
# Try with lmerTest package -- output should be the same as above
library(lmerTest)
#Linear mixed effects model
lmerTest.mod1 <- lmer(y ~ fixed1 + (1|rand2/rand1), data)
lmerTest.mod2 <- lmer(y ~ fixed1 + fixed2 + (1|rand2/rand1), data)
rsquared.glmm(list(mod0, lmerTest.mod1, lmerTest.mod2))
(lmerTest.models <- rsquared.glmm(list(mod0, lmerTest.mod1, lmerTest.mod2)))
# Same results
all.equal(lme4.models[1:3, -(1:3)], lmerTest.models[,-(1:3)])
nlme::lme
and lme4::lmer
yield very similar r-squared values.
library(nlme)
lme.mod1 <- lme(y ~ fixed1, random=~1|rand2/rand1, data)
#Change to old optimizer to solve convergence issueslme4.models2[2:4, -(1:3)]
lme.mod1.1 <- lme(y ~ fixed1, random=~fixed1|rand2/rand1, control = lmeControl(opt = "optim"), data)
lme.mod2 <- lme(y ~ fixed1 + fixed2, random=~1|rand2/rand1, data)
(lme.models <- rsquared.glmm(list(lme.mod1, lme.mod1.1, lme.mod2)))
# Compare to lme4 models, minor differences
all.equal(lme4.models2[2:4, -(1:3)], lme.models[,-(1:3)], tol = 1e-4)