Skip to content

A Python package to facilitate random forest modeling. This package provides functionalities for creating, training, preprocessing, and evaluating random forest models with custom exception handling.

Notifications You must be signed in to change notification settings

k4rimDev/Random-Forest-Modelling

Repository files navigation

Random Forest Package

A Python package for advanced Random Forest modeling, including classification and regression, hyperparameter tuning, and model visualization.

Features

  • Random Forest Modeling: Supports RandomForestClassifier and RandomForestRegressor.
  • Model Tuning: Perform hyperparameter tuning using grid search and randomized search.
  • Model Evaluation: Evaluate model performance with cross-validation.
  • Visualization: Visualize model performance with confusion matrices, ROC curves, and precision-recall curves.
  • Custom Exceptions: Handles errors with custom exception classes.

Installation

You can install the package using pip:

pip install random-forest-package

Usage

  • Basic Example:
from random_forest_package.model import RandomForestModel
from random_forest_package.tuner import ModelTuner
from random_forest_package.visualizer import ModelVisualizer

# Initialize and train the model
rf_model = RandomForestModel(n_estimators=100, random_state=42)
rf_model.train(X_train, y_train)

# Perform hyperparameter tuning
tuner = ModelTuner(rf_model)
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [None, 10, 20]}
tuner.grid_search(X_train, y_train, param_grid)

# Visualize model performance
visualizer = ModelVisualizer(rf_model)
visualizer.plot_confusion_matrix(X_test, y_test)
visualizer.plot_roc_curve(X_test, y_test)
visualizer.plot_precision_recall_curve(X_test, y_test)
  • Advanced Tuning Example:
from random_forest_package.tuner import ModelTuner
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris

# Load data
X, y = load_iris(return_X_y=True)

# Initialize and tune the model
model = RandomForestClassifier()
tuner = ModelTuner(model)
param_distributions = {'n_estimators': [10, 50, 100], 'max_depth': [None, 10, 20]}
tuner.randomized_search(X, y, param_distributions, n_iter=10)

# Cross-validation
results = tuner.cross_validate(X, y)
print(f"Mean score: {results['mean_score']}, Std score: {results['std_score']}")

Creating and Using a Random Forest Classifier

from random_forest_package.classifier import RandomForestClassifierModel
from random_forest_package.trainer import ModelTrainer
from random_forest_package.evaluator import ModelEvaluator
from random_forest_package.tuner import ModelTuner
from random_forest_package.visualizer import ModelVisualizer

# Create a Random Forest Classifier
classifier = RandomForestClassifierModel(n_estimators=100, max_depth=10, random_state=42)

# Train the Classifier
trainer = ModelTrainer(classifier)
trainer.train(X_train, y_train)

# Evaluate the Classifier
evaluator = ModelEvaluator(classifier)
accuracy, conf_matrix, class_report = evaluator.evaluate(X_test, y_test)

# Tune the Classifier's Hyperparameters
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [None, 10, 20, 30]}
tuner = ModelTuner(classifier, param_grid, search_type='grid')
best_params = tuner.tune(X_train, y_train)

# Visualize the Classifier's Performance
visualizer = ModelVisualizer(classifier)
visualizer.plot_confusion_matrix(X_test, y_test)
visualizer.plot_roc_curve(X_test, y_test)
visualizer.plot_precision_recall_curve(X_test, y_test)

print("Best Parameters:", best_params)
print("Accuracy:", accuracy)
print("Confusion Matrix:\n", conf_matrix)
print("Classification Report:\n", class_report)

Creating and Using a Random Forest Regressor

from random_forest_package.regressor import RandomForestRegressorModel
from random_forest_package.trainer import ModelTrainer
from random_forest_package.evaluator import ModelEvaluator
from random_forest_package.tuner import ModelTuner
from random_forest_package.visualizer import ModelVisualizer

# Create a Random Forest Regressor
regressor = RandomForestRegressorModel(n_estimators=100, max_depth=10, random_state=42)

# Train the Regressor
trainer = ModelTrainer(regressor)
trainer.train(X_train, y_train)

# Evaluate the Regressor
evaluator = ModelEvaluator(regressor)
mse = evaluator.evaluate(X_test, y_test)

# Tune the Regressor's Hyperparameters
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [None, 10, 20, 30]}
tuner = ModelTuner(regressor, param_grid, search_type='random')
best_params = tuner.tune(X_train, y_train)

print("Best Parameters:", best_params)
print("Mean Squared Error:", mse)

Preprocessing Data

To preprocess data:

import pandas as pd
from random_forest_package.preprocess import preprocess_data

# Example data
X = pd.DataFrame({'feature1': [1, 2, 3], 'feature2': [4, 5, 6]})
y = pd.Series([0, 1, 0])

X_train, X_test, y_train, y_test = preprocess_data(X, y, test_size=0.2, random_state=42)

Visualization

Visualization functions can be used to generate plots of model performance:

from random_forest_package.visualizer import ModelVisualizer

# Initialize the visualizer
visualizer = ModelVisualizer(rf_model)

# Plot confusion matrix
visualizer.plot_confusion_matrix(X_test, y_test)

# Plot ROC curve
visualizer.plot_roc_curve(X_test, y_test)

# Plot precision-recall curve
visualizer.plot_precision_recall_curve(X_test, y_test)

Custom Exceptions

This package provides custom exceptions for better error handling:

  • ModelCreationError: Raised when there is an error creating the random forest model.
  • PreprocessingError: Raised when there is an error during data preprocessing.
  • TrainingError: Raised when there is an error during model training.
  • EvaluationError: Raised when there is an error during model evaluation.
  • VisualizationError: Raised when there is an error during visualization.

Example of handling a custom exception:

class ModelCreationError(Exception):
    """Raised when there is an error in creating the model."""
    pass

class TrainingError(Exception):
    """Raised when there is an error during training."""
    pass

class EvaluationError(Exception):
    """Raised when there is an error during evaluation."""
    pass

Testing

Tests are written using pytest. To run the tests:

poetry run pytest

Project Structure

random_forest_package/
│
├── random_forest_package/
│   ├── __init__.py
│   ├── base_model.py          # Contains the abstract base class for the models
│   ├── classifier.py          # Contains the RandomForestClassifier class
│   ├── regressor.py           # Contains the RandomForestRegressor class
│   ├── preprocess.py          # Contains data preprocessing classes or functions
│   ├── trainer.py             # Contains classes for training models
│   ├── evaluator.py           # Contains classes for evaluating models
│   ├── utils.py               # Utility functions or classes
│   ├── visualizer.py          # Utility visualize cases
│   └── exceptions.py          # Custom exceptions
│
├── tests/
│   ├── __init__.py
│   ├── test_classifier.py     # Tests for the classifier
│   ├── test_regressor.py      # Tests for the regressor
│   ├── test_preprocess.py     # Tests for preprocessing
│   ├── test_trainer.py        # Tests for training
│   ├── test_evaluator.py      # Tests for evaluation
│   └── test_utils.py          # Tests for utility functions
│
├── .gitignore
├── LICENSE
├── README.md
└── pyproject.toml

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

Authors

Karim Mirzaguliyev - [email protected]

About

A Python package to facilitate random forest modeling. This package provides functionalities for creating, training, preprocessing, and evaluating random forest models with custom exception handling.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages