Skip to content

kanosawa/anime-face-faster-rcnn-da.pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Domain Adaptation for anime face detection

This is an implementation of domain adaptation for anime face detection on Pytorch.

We referred hdjsjyl/face-faster-rcnn.pytorch.

Preparation

First of all, clone the code

git clone https://github.com/kanosawa/anime-face-faster-rcnn-da.pytorch.git

Then, create a folder:

cd anime-face-faster-rcnn-da.pytorch && mkdir data

Data Preparation

  1. WIDER Face dataset
  2. CelebA dataset : img_align_celeba.zip
  3. animeface-character-dataset

Download above data and extract to data folder as below structure.

  • data
    • WIDER2015
      • eval_tools
      • wider_face_split
      • WIDER_test
      • WIDER_train
      • WIDER_val
    • img_align_celeba
    • animeface-character-dataset

Pretationed Model

Download VGG16 and put them into the data/pretrained_model/

Compilation

cd lib
python setup.py build develop

Train

python trainval_net.py 

Demo

Put images to images folder and execute below command.

python demo.py --checksession $SESSION --checkepoch $EPOCH --checkpoint $POINT

if you want to use output/vgg16/wider_face/faster_rcnn_1_3_6439.pth, substitute $SESSION=1, $EPOCH=3, $POINT=6439

About

Domain Adaptation for anime face detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published