Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
kazewong committed Sep 18, 2024
1 parent 3d3b20a commit 4b276a5
Show file tree
Hide file tree
Showing 3 changed files with 172 additions and 175 deletions.
26 changes: 16 additions & 10 deletions example/GW150914_IMRPhenomD.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,11 +32,13 @@
ifo.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

M_c_min, M_c_max = 10.0, 80.0
eta_min, eta_max = 0.2, 0.25
# m_1_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_max)[0], Mc_q_to_m1_m2(M_c_max, q_min)[0], parameter_names=["m_1"])
# m_2_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_min)[1], Mc_q_to_m1_m2(M_c_max, q_max)[1], parameter_names=["m_2"])
q_min, q_max = 0.125, 1.0
# eta_min, eta_max = 0.2, 0.25
m_1_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_max)[0], Mc_q_to_m1_m2(M_c_max, q_min)[0], parameter_names=["m_1"])
m_2_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_min)[1], Mc_q_to_m1_m2(M_c_max, q_max)[1], parameter_names=["m_2"])
Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"])
eta_prior = UniformPrior(eta_min, eta_max, parameter_names=["eta"])
q_prior = UniformPrior(q_min, q_max, parameter_names=["q"])
# eta_prior = UniformPrior(eta_min, eta_max, parameter_names=["eta"])
s1z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"])
s2z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"])
dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"])
Expand All @@ -49,8 +51,11 @@

prior = CombinePrior(
[
Mc_prior,
eta_prior,
m_1_prior,
m_2_prior,
# Mc_prior,
# q_prior,
# eta_prior,
s1z_prior,
s2z_prior,
dL_prior,
Expand All @@ -64,9 +69,10 @@
)

sample_transforms = [
# ComponentMassesToChirpMassMassRatioTransform,
ComponentMassesToChirpMassMassRatioTransform,
BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max),
BoundToUnbound(name_mapping = (["eta"], ["eta_unbounded"]), original_lower_bound=eta_min, original_upper_bound=eta_max),
BoundToUnbound(name_mapping = (["q"], ["q_unbounded"]), original_lower_bound=q_min, original_upper_bound=q_max),
# BoundToUnbound(name_mapping = (["eta"], ["eta_unbounded"]), original_lower_bound=eta_min, original_upper_bound=eta_max),
BoundToUnbound(name_mapping = (["s1_z"], ["s1_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["s2_z"], ["s2_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["d_L"], ["d_L_unbounded"]) , original_lower_bound=1.0, original_upper_bound=2000.0),
Expand All @@ -80,7 +86,7 @@
]

likelihood_transforms = [
# ComponentMassesToChirpMassSymmetricMassRatioTransform,
ComponentMassesToChirpMassSymmetricMassRatioTransform,
]

likelihood = TransientLikelihoodFD(
Expand Down Expand Up @@ -128,6 +134,6 @@
verbose=True
)

jim.sample(jax.random.PRNGKey(42))
# jim.sample(jax.random.PRNGKey(42))
# jim.get_samples()
# jim.print_summary()
156 changes: 156 additions & 0 deletions example/GW150914_IMRPhenomPV2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
import time

import jax
import jax.numpy as jnp

from jimgw.jim import Jim
from jimgw.prior import CombinePrior, UniformPrior, UniformSpherePrior, CosinePrior, SinePrior, PowerLawPrior
from jimgw.single_event.detector import H1, L1
from jimgw.single_event.likelihood import TransientLikelihoodFD
from jimgw.single_event.waveform import RippleIMRPhenomPv2
from flowMC.strategy.optimization import optimization_Adam
from jimgw.single_event.transforms import SkyFrameToDetectorFrameSkyPositionTransform, SymmetricMassRatioToMassRatioTransform, SpinToCartesianSpinTransform, MassRatioToSymmetricMassRatioTransform
from jimgw.transforms import BoundToUnbound


jax.config.update("jax_enable_x64", True)

###########################################
########## First we grab data #############
###########################################

total_time_start = time.time()

# first, fetch a 4s segment centered on GW150914
gps = 1126259462.4
start = gps - 2
end = gps + 2
fmin = 20.0
fmax = 1024.0

ifos = [H1, L1]

H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)
L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

waveform = RippleIMRPhenomPv2(f_ref=20)

###########################################
########## Set up priors ##################
###########################################

M_c_min, M_c_max = 10.0, 80.0
eta_min, eta_max = 0.2, 0.25
# m_1_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_max)[0], Mc_q_to_m1_m2(M_c_max, q_min)[0], parameter_names=["m_1"])
# m_2_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_min)[1], Mc_q_to_m1_m2(M_c_max, q_max)[1], parameter_names=["m_2"])
M_c_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"])
eta_prior = UniformPrior(eta_min, eta_max, parameter_names=["eta"])
theta_jn_prior = SinePrior(parameter_names=["theta_jn"])
phi_jl_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phi_jl"])
theta_1_prior = SinePrior(parameter_names=["theta_1"])
theta_2_prior = SinePrior(parameter_names=["theta_2"])
phi_12_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phi_12"])
a_1_prior = UniformPrior(0.0, 1.0, parameter_names=["a_1"])
a_2_prior = UniformPrior(0.0, 1.0, parameter_names=["a_2"])
dL_prior = PowerLawPrior(10.0, 2000.0, 2.0, parameter_names=["d_L"])
t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"])
phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"])
psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"])
ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"])
dec_prior = CosinePrior(parameter_names=["dec"])

prior = CombinePrior(
[
# m_1_prior,
# m_2_prior,
M_c_prior,
eta_prior,
theta_jn_prior,
phi_jl_prior,
theta_1_prior,
theta_2_prior,
phi_12_prior,
a_1_prior,
a_2_prior,
dL_prior,
t_c_prior,
phase_c_prior,
psi_prior,
ra_prior,
dec_prior,
]
)

sample_transforms = [
# ComponentMassesToChirpMassMassRatioTransform,
BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max),
BoundToUnbound(name_mapping = (["eta"], ["eta_unbounded"]), original_lower_bound=eta_min, original_upper_bound=eta_max),
BoundToUnbound(name_mapping = (["theta_jn"], ["theta_jn_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["phi_jl"], ["phi_jl_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
BoundToUnbound(name_mapping = (["theta_1"], ["theta_1_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["theta_2"], ["theta_2_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["phi_12"], ["phi_12_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
BoundToUnbound(name_mapping = (["a_1"], ["a_1_unbounded"]) , original_lower_bound=0.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["a_2"], ["a_2_unbounded"]) , original_lower_bound=0.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["d_L"], ["d_L_unbounded"]) , original_lower_bound=10.0, original_upper_bound=2000.0),
BoundToUnbound(name_mapping = (["t_c"], ["t_c_unbounded"]) , original_lower_bound=-0.05, original_upper_bound=0.05),
BoundToUnbound(name_mapping = (["phase_c"], ["phase_c_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi),
SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos),
BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
]

likelihood_transforms = [
# ComponentMassesToChirpMassMassRatioTransform,
SymmetricMassRatioToMassRatioTransform,
SpinToCartesianSpinTransform(freq_ref=20.0),
MassRatioToSymmetricMassRatioTransform,
]

likelihood = TransientLikelihoodFD(
ifos, waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2
)

mass_matrix = jnp.eye(prior.n_dim)
mass_matrix = mass_matrix.at[1, 1].set(1e-3)
mass_matrix = mass_matrix.at[9, 9].set(1e-3)
local_sampler_arg = {"step_size": mass_matrix * 1e-3}

Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1)

import optax
n_epochs = 20
n_loop_training = 100
total_epochs = n_epochs * n_loop_training
start = total_epochs//10
learning_rate = optax.polynomial_schedule(
1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start
)

jim = Jim(
likelihood,
prior,
sample_transforms=sample_transforms,
likelihood_transforms=likelihood_transforms,
n_loop_training=n_loop_training,
n_loop_production=20,
n_local_steps=10,
n_global_steps=1000,
n_chains=500,
n_epochs=n_epochs,
learning_rate=learning_rate,
n_max_examples=50000,
n_flow_sample=50000,
momentum=0.9,
batch_size=50000,
use_global=True,
keep_quantile=0.0,
train_thinning=1,
output_thinning=10,
local_sampler_arg=local_sampler_arg,
strategies=[Adam_optimizer,"default"],
)


jim.sample(jax.random.PRNGKey(42))#,initial_guess=chains)
165 changes: 0 additions & 165 deletions example/GW150914_PV2.py

This file was deleted.

0 comments on commit 4b276a5

Please sign in to comment.