Skip to content

Commit

Permalink
Update GW170817 PhenomD
Browse files Browse the repository at this point in the history
  • Loading branch information
tsunhopang committed Oct 16, 2024
1 parent 54cb2e1 commit ae9204a
Showing 1 changed file with 184 additions and 0 deletions.
184 changes: 184 additions & 0 deletions example/GW170817_IMRPhenomD.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
import time

import jax
import jax.numpy as jnp

from jimgw.jim import Jim
from jimgw.jim import Jim
from jimgw.prior import (
CombinePrior,
UniformPrior,
CosinePrior,
SinePrior,
PowerLawPrior,
UniformSpherePrior,
)
from jimgw.single_event.detector import H1, L1, V1
from jimgw.single_event.likelihood import TransientLikelihoodFD, HeterodynedTransientLikelihoodFD
from jimgw.single_event.waveform import RippleIMRPhenomD
from jimgw.transforms import BoundToUnbound
from jimgw.single_event.transforms import (
SkyFrameToDetectorFrameSkyPositionTransform,
SphereSpinToCartesianSpinTransform,
MassRatioToSymmetricMassRatioTransform,
DistanceToSNRWeightedDistanceTransform,
GeocentricArrivalTimeToDetectorArrivalTimeTransform,
GeocentricArrivalPhaseToDetectorArrivalPhaseTransform,
)
from jimgw.single_event.utils import Mc_q_to_m1_m2
from flowMC.strategy.optimization import optimization_Adam

jax.config.update("jax_enable_x64", True)

###########################################
########## First we grab data #############
###########################################

total_time_start = time.time()

# first, fetch a 4s segment centered on GW150914

gps = 1187008882.43
trigger_time = gps
fmin = 20
fmax = 2048
minimum_frequency = fmin
maximum_frequency = fmax
duration = 128
post_trigger_duration = 2
epoch = duration - post_trigger_duration
f_ref = fmin

ifos = [H1, L1, V1]


tukey_alpha = 2 / (duration / 2)
H1.load_data(
gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha
)
L1.load_data(
gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha
)
V1.load_data(
gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha
)


waveform = RippleIMRPhenomD(f_ref=f_ref)

###########################################
########## Set up priors ##################
###########################################

prior = []

# Mass prior
M_c_min, M_c_max = 1.18, 1.21
q_min, q_max = 0.125, 1.0
Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"])
q_prior = UniformPrior(q_min, q_max, parameter_names=["q"])

prior = prior + [Mc_prior, q_prior]

# Spin prior
s1_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"])
s2_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"])
iota_prior = SinePrior(parameter_names=["iota"])

prior = prior + [
s1_prior,
s2_prior,
iota_prior,
]

# Extrinsic prior
dL_prior = PowerLawPrior(1.0, 75.0, 2.0, parameter_names=["d_L"])
t_c_prior = UniformPrior(-0.1, 0.1, parameter_names=["t_c"])
phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"])
psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"])
ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"])
dec_prior = CosinePrior(parameter_names=["dec"])

prior = prior + [
dL_prior,
t_c_prior,
phase_c_prior,
psi_prior,
ra_prior,
dec_prior,
]

prior = CombinePrior(prior)

# Defining Transforms

sample_transforms = [
DistanceToSNRWeightedDistanceTransform(gps_time=gps, ifos=ifos, dL_min=dL_prior.xmin, dL_max=dL_prior.xmax),
GeocentricArrivalPhaseToDetectorArrivalPhaseTransform(gps_time=gps, ifo=ifos[0]),
GeocentricArrivalTimeToDetectorArrivalTimeTransform(tc_min=t_c_prior.xmin, tc_max=t_c_prior.xmax, gps_time=gps, ifo=ifos[0]),
SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos),
BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max),
BoundToUnbound(name_mapping = (["q"], ["q_unbounded"]), original_lower_bound=q_min, original_upper_bound=q_max),
BoundToUnbound(name_mapping = (["s1_z"], ["s1_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["s2_z"], ["s2_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = (["iota"], ["iota_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["phase_det"], ["phase_det_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
]

likelihood_transforms = [
MassRatioToSymmetricMassRatioTransform,
]


#likelihood = TransientLikelihoodFD(
# [H1, L1, V1], waveform=waveform, trigger_time=trigger_time, duration=duration, post_trigger_duration=post_trigger_duration
#)

likelihood = HeterodynedTransientLikelihoodFD(ifos, waveform=waveform, n_bins = 1000, trigger_time=trigger_time, duration=duration, post_trigger_duration=post_trigger_duration, prior = prior, sample_transforms = sample_transforms, likelihood_transforms = likelihood_transforms, popsize = 10, n_steps = 50)

mass_matrix = jnp.eye(prior.n_dim)
# mass_matrix = mass_matrix.at[1, 1].set(1e-3)
# mass_matrix = mass_matrix.at[9, 9].set(1e-3)
local_sampler_arg = {"step_size": mass_matrix * 1e-3}

Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1)

import optax

n_epochs = 20
n_loop_training = 100
total_epochs = n_epochs * n_loop_training
start = total_epochs // 10
learning_rate = optax.polynomial_schedule(
1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start
)

jim = Jim(
likelihood,
prior,
sample_transforms=sample_transforms,
likelihood_transforms=likelihood_transforms,
n_loop_training=n_loop_training,
n_loop_production=20,
n_local_steps=10,
n_global_steps=1000,
n_chains=500,
n_epochs=n_epochs,
learning_rate=learning_rate,
n_max_examples=30000,
n_flow_sample=100000,
momentum=0.9,
batch_size=30000,
use_global=True,
keep_quantile=0.0,
train_thinning=1,
output_thinning=10,
local_sampler_arg=local_sampler_arg,
# strategies=[Adam_optimizer,"default"],
)


jim.sample(jax.random.PRNGKey(42))

0 comments on commit ae9204a

Please sign in to comment.