-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
54cb2e1
commit ae9204a
Showing
1 changed file
with
184 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
import time | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
|
||
from jimgw.jim import Jim | ||
from jimgw.jim import Jim | ||
from jimgw.prior import ( | ||
CombinePrior, | ||
UniformPrior, | ||
CosinePrior, | ||
SinePrior, | ||
PowerLawPrior, | ||
UniformSpherePrior, | ||
) | ||
from jimgw.single_event.detector import H1, L1, V1 | ||
from jimgw.single_event.likelihood import TransientLikelihoodFD, HeterodynedTransientLikelihoodFD | ||
from jimgw.single_event.waveform import RippleIMRPhenomD | ||
from jimgw.transforms import BoundToUnbound | ||
from jimgw.single_event.transforms import ( | ||
SkyFrameToDetectorFrameSkyPositionTransform, | ||
SphereSpinToCartesianSpinTransform, | ||
MassRatioToSymmetricMassRatioTransform, | ||
DistanceToSNRWeightedDistanceTransform, | ||
GeocentricArrivalTimeToDetectorArrivalTimeTransform, | ||
GeocentricArrivalPhaseToDetectorArrivalPhaseTransform, | ||
) | ||
from jimgw.single_event.utils import Mc_q_to_m1_m2 | ||
from flowMC.strategy.optimization import optimization_Adam | ||
|
||
jax.config.update("jax_enable_x64", True) | ||
|
||
########################################### | ||
########## First we grab data ############# | ||
########################################### | ||
|
||
total_time_start = time.time() | ||
|
||
# first, fetch a 4s segment centered on GW150914 | ||
|
||
gps = 1187008882.43 | ||
trigger_time = gps | ||
fmin = 20 | ||
fmax = 2048 | ||
minimum_frequency = fmin | ||
maximum_frequency = fmax | ||
duration = 128 | ||
post_trigger_duration = 2 | ||
epoch = duration - post_trigger_duration | ||
f_ref = fmin | ||
|
||
ifos = [H1, L1, V1] | ||
|
||
|
||
tukey_alpha = 2 / (duration / 2) | ||
H1.load_data( | ||
gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha | ||
) | ||
L1.load_data( | ||
gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha | ||
) | ||
V1.load_data( | ||
gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha | ||
) | ||
|
||
|
||
waveform = RippleIMRPhenomD(f_ref=f_ref) | ||
|
||
########################################### | ||
########## Set up priors ################## | ||
########################################### | ||
|
||
prior = [] | ||
|
||
# Mass prior | ||
M_c_min, M_c_max = 1.18, 1.21 | ||
q_min, q_max = 0.125, 1.0 | ||
Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"]) | ||
q_prior = UniformPrior(q_min, q_max, parameter_names=["q"]) | ||
|
||
prior = prior + [Mc_prior, q_prior] | ||
|
||
# Spin prior | ||
s1_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"]) | ||
s2_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"]) | ||
iota_prior = SinePrior(parameter_names=["iota"]) | ||
|
||
prior = prior + [ | ||
s1_prior, | ||
s2_prior, | ||
iota_prior, | ||
] | ||
|
||
# Extrinsic prior | ||
dL_prior = PowerLawPrior(1.0, 75.0, 2.0, parameter_names=["d_L"]) | ||
t_c_prior = UniformPrior(-0.1, 0.1, parameter_names=["t_c"]) | ||
phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) | ||
psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) | ||
ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) | ||
dec_prior = CosinePrior(parameter_names=["dec"]) | ||
|
||
prior = prior + [ | ||
dL_prior, | ||
t_c_prior, | ||
phase_c_prior, | ||
psi_prior, | ||
ra_prior, | ||
dec_prior, | ||
] | ||
|
||
prior = CombinePrior(prior) | ||
|
||
# Defining Transforms | ||
|
||
sample_transforms = [ | ||
DistanceToSNRWeightedDistanceTransform(gps_time=gps, ifos=ifos, dL_min=dL_prior.xmin, dL_max=dL_prior.xmax), | ||
GeocentricArrivalPhaseToDetectorArrivalPhaseTransform(gps_time=gps, ifo=ifos[0]), | ||
GeocentricArrivalTimeToDetectorArrivalTimeTransform(tc_min=t_c_prior.xmin, tc_max=t_c_prior.xmax, gps_time=gps, ifo=ifos[0]), | ||
SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos), | ||
BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max), | ||
BoundToUnbound(name_mapping = (["q"], ["q_unbounded"]), original_lower_bound=q_min, original_upper_bound=q_max), | ||
BoundToUnbound(name_mapping = (["s1_z"], ["s1_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0), | ||
BoundToUnbound(name_mapping = (["s2_z"], ["s2_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0), | ||
BoundToUnbound(name_mapping = (["iota"], ["iota_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), | ||
BoundToUnbound(name_mapping = (["phase_det"], ["phase_det_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), | ||
BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), | ||
BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), | ||
BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), | ||
] | ||
|
||
likelihood_transforms = [ | ||
MassRatioToSymmetricMassRatioTransform, | ||
] | ||
|
||
|
||
#likelihood = TransientLikelihoodFD( | ||
# [H1, L1, V1], waveform=waveform, trigger_time=trigger_time, duration=duration, post_trigger_duration=post_trigger_duration | ||
#) | ||
|
||
likelihood = HeterodynedTransientLikelihoodFD(ifos, waveform=waveform, n_bins = 1000, trigger_time=trigger_time, duration=duration, post_trigger_duration=post_trigger_duration, prior = prior, sample_transforms = sample_transforms, likelihood_transforms = likelihood_transforms, popsize = 10, n_steps = 50) | ||
|
||
mass_matrix = jnp.eye(prior.n_dim) | ||
# mass_matrix = mass_matrix.at[1, 1].set(1e-3) | ||
# mass_matrix = mass_matrix.at[9, 9].set(1e-3) | ||
local_sampler_arg = {"step_size": mass_matrix * 1e-3} | ||
|
||
Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1) | ||
|
||
import optax | ||
|
||
n_epochs = 20 | ||
n_loop_training = 100 | ||
total_epochs = n_epochs * n_loop_training | ||
start = total_epochs // 10 | ||
learning_rate = optax.polynomial_schedule( | ||
1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start | ||
) | ||
|
||
jim = Jim( | ||
likelihood, | ||
prior, | ||
sample_transforms=sample_transforms, | ||
likelihood_transforms=likelihood_transforms, | ||
n_loop_training=n_loop_training, | ||
n_loop_production=20, | ||
n_local_steps=10, | ||
n_global_steps=1000, | ||
n_chains=500, | ||
n_epochs=n_epochs, | ||
learning_rate=learning_rate, | ||
n_max_examples=30000, | ||
n_flow_sample=100000, | ||
momentum=0.9, | ||
batch_size=30000, | ||
use_global=True, | ||
keep_quantile=0.0, | ||
train_thinning=1, | ||
output_thinning=10, | ||
local_sampler_arg=local_sampler_arg, | ||
# strategies=[Adam_optimizer,"default"], | ||
) | ||
|
||
|
||
jim.sample(jax.random.PRNGKey(42)) |