Skip to content

Commit

Permalink
Merge pull request #233 from Peefy/kubevela-integration-documents
Browse files Browse the repository at this point in the history
docs: add kcl kubevela integration guides
  • Loading branch information
Peefy authored Dec 13, 2023
2 parents 2b21be6 + ad22704 commit 353d008
Show file tree
Hide file tree
Showing 11 changed files with 337 additions and 2 deletions.
139 changes: 139 additions & 0 deletions blog/2023-12-15-kubevela-integration/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
---
slug: 2023-12-15-kubevela-integration
title: Efficient Cloud Native Application Deployment - KCL and KubeVela Integration Quick Guide
authors:
name: KCL Team Member
title: KCL Team Member
tags: [KCL, KubeVela]
---

![cover](/img/blog/2023-12-15-kubevela-integration/cover.png)

# Introduction

[KubeVela](https://kubevela.net/) is a modern application delivery system hosted by the CNCF Foundation. It is built on the Open Application Model (OAM) specification and aims to abstract the complexity of Kubernetes, providing a set of simple and easy-to-use command-line tools and APIs for developers to deploy and operate cloud-native applications without worrying about the underlying details.

[KCL](https://kcl-lang.io) is a configuration and policy language for cloud-native scenarios, hosted by the CNCF Foundation. It aims to improve the writing of complex configurations, such as cloud-native Kubernetes configurations, using mature programming language techniques and practices. KCL focuses on building better modularity, scalability, and stability around configuration, as well as easier logic writing, automation, and integration with the toolchain.

KCL exists in a completely open cloud-native world and is not tied to any orchestration/engine tools or Kubernetes controllers. It can provide API abstraction, composition, and validation capabilities for both Kubernetes clients and runtime.

Users can choose suitable cloud-native tools such as Kubectl, Helm, Kustomize, KPT, KusionStack, KubeVela, Helmfile, Crossplane, or ArgoCD to combine with KCL and apply configurations to the cluster based on their specific scenarios.

![integration](/img/blog/2023-12-15-kubevela-integration/integration.png)

This blog is the first in a series that explores the efficient deployment and operation of cloud-native applications using KCL and KubeVela together. We will share more advanced usage in future articles, so stay tuned.

## Using KCL with KubeVela

sing KCL with KubeVela has the following benefits:

+ **Simpler configuration**: KCL provides stronger templating capabilities, such as conditions and loops, for KubeVela OAM configurations at the client level, reducing the need for repetitive YAML writing. At the same time, the reuse of KCL model libraries and toolchains enhances the experience and management efficiency of configuration and policy writing.
+ **Better maintainability**: KCL provides a configuration file structure that is more conducive to version control and team collaboration, instead of relying solely on YAML. When combined with OAM application models written in KCL, application configurations become easier to maintain and iterate.
+ **Simplified operations**: By combining the simplicity of KCL configurations with the ease of use of KubeVela, daily operational tasks such as deploying, updating, scaling, or rolling back applications can be simplified. Developers can focus more on the applications themselves rather than the tedious details of the deployment process.
+ **Improved cross-team collaboration**: By using KCL's configuration chunk writing and package management capabilities in conjunction with KubeVela, clearer boundaries can be defined, allowing different teams (such as development, testing, and operations teams) to collaborate systematically. Each team can focus on tasks within their scope of responsibility, delivering, sharing, and reusing their own configurations without worrying about other aspects.

## Workflow

![workflow](/img/blog/2023-12-15-kubevela-integration/workflow.png)

In this example, we use the KCL Playground application (written in Go and HTML5) as an example and use KCL to define the OAM configuration that needs to be deployed. The overall workflow is as follows:

+ Application code development produces a Docker image.
+ Write OAM configurations using KCL.
+ Deploy configurations using KubeVela.
+ Verify the running status of the application.

## Specific Steps

### 0. Prerequisites

+ Familiarize yourself with basic Unix/Linux commands.
+ Familiarize yourself with using Git.
+ Understand the basics of Kubernetes.
+ Understand KubeVela.
+ Understand the basics of KCL.

### 1. Configure the Kubernetes Cluster

Install [K3d](https://github.com/k3d-io/k3d) and create a cluster.

```shell
k3d cluster create
```

> Note: You can use other methods to create your own Kubernetes cluster, such as kind, minikube, etc., in this scenario.
### 2. Install KubeVela

+ Install the KubeVela CLI.

```shell
curl -fsSl https://kubevela.net/script/install.sh | bash
```

+ Install KubeVela Core.

```shell
vela install
```

### 3. Write OAM Configurations

+ Install KCL.

```shell
curl -fsSL https://kcl-lang.io/script/install-cli.sh | /bin/bash
```

+ Create a new project and add OAM dependencies.

```shell
kcl mod init kcl-play-svc && cd kcl-play-svc && kcl mod add oam
```

+ Write the following code in main.k.

```python
import oam

oam.Application {
metadata.name = "kcl-play-svc"
spec.components = [{
name = metadata.name
type = "webservice"
properties = {
image = "kcllang/kcl"
ports = [{port = 80, expose = True}]
cmd = ["kcl", "play"]
}
}]
}
```

### 4. Deploy the application and verify.

+ Apply the configuration.

```shell
kcl run | vela up -f -
```

+ Port forward the service.

```shell
vela port-forward kcl-play-svc
```

Then we can see the KCL Playground application running successfully in the browser.

![kcl-play-svc](/img/blog/2023-12-15-kubevela-integration/kcl-play-svc.png)

## Conclusion

Through this guide, we have learned how to deploy cloud-native applications using KubeVela and KCL. In future blogs, we will explain how to further extend the capabilities of KubeVela by using KCL on the client side such as

+ Using the inheritance, composition, and validation capabilities of KCL to extend the OAM model and define application abstractions that are better suited to your infrastructure or organization.
+ Using the modularized configuration capabilities of KCL to organize OAM multi-environment configurations with conditions, logic, loops, and modularity. For example, distribute longer App Definitions into different files to reduce boilerplate configurations.
+ Further integration with projects like KusionStack and ArgoCD to achieve better GitOps.
+ Incorporate more cloud-native capabilities or Kubernetes Operators such as KubeBlocks and Crossplane to improve database management and provide programmable access to unified cloud APIs and Kubernetes APIs.
+ And many other use cases...
8 changes: 8 additions & 0 deletions examples/kubevela/kcl-play-svc/kcl.mod
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
[package]
name = "kcl-play-svc"
edition = "0.0.1"
version = "0.0.1"

[dependencies]
oam = "0.1.0"
k8s = "1.28"
17 changes: 17 additions & 0 deletions examples/kubevela/kcl-play-svc/kcl.mod.lock
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
[dependencies]
[dependencies.k8s]
name = "k8s"
full_name = "k8s_1.28"
version = "1.28"
sum = "aTxPUVZyr9MdiB3YdiY/8pCh9sC55yURnZdGlJsKG6Q="
reg = "ghcr.io"
repo = "kcl-lang/k8s"
oci_tag = "1.28"
[dependencies.oam]
name = "oam"
full_name = "oam_0.1.0"
version = "0.1.0"
sum = "/gS2egdMN690KVmNVNynwnZFFvcUAMB4DEjJ9Q1q7oA="
reg = "ghcr.io"
repo = "kcl-lang/oam"
oci_tag = "0.1.0"
14 changes: 14 additions & 0 deletions examples/kubevela/kcl-play-svc/main.k
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
import oam

oam.Application {
metadata.name = "kcl-play-svc"
spec.components = [{
name = metadata.name
type = "webservice"
properties = {
image = "kcllang/kcl"
ports = [{port = 80, expose = True}]
cmd = ["kcl", "play"]
}
}]
}
16 changes: 16 additions & 0 deletions examples/kubevela/kcl-play-svc/vela.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
apiVersion: core.oam.dev/v1beta1
kind: Application
metadata:
name: kcl-play-svc
spec:
components:
- name: kcl-play-svc
properties:
image: kcllang/kcl
ports:
- port: 80
expose: true
cmd:
- kcl
- play
type: webservice
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ GitOps 是一种实现持续交付的现代方式。它的核心思想是拥有

## 具体步骤

### 0.先决条件
### 0. 先决条件

- 熟悉 Unix/Linux 的基本命令
- 熟悉 Git 以及 Github Action 使用
Expand Down Expand Up @@ -283,4 +283,4 @@ spec:

## 结论

通过本篇文章,我们可以使用 Github, ArgoCD 和 KCL 等创建 GitOps 自动化流水线,可以高效稳定地构建容器化应用,同时自动化更新最新的 Dcoker 镜像标签,并保持 Git 配置与集群配置一致。此外,通过将 KCL 和 ArgoCD 相结合可以帮助我们更好地实现基础设施即代码(IaC),提高部署效率,实现不同角色的关注点分离并简化应用程序的配置管理。
通过本篇文章,我们可以使用 Github, ArgoCD 和 KCL 等创建 GitOps 自动化流水线,可以高效稳定地构建容器化应用,同时自动化更新最新的 Docker 镜像标签,并保持 Git 配置与集群配置一致。此外,通过将 KCL 和 ArgoCD 相结合可以帮助我们更好地实现基础设施即代码(IaC),提高部署效率,实现不同角色的关注点分离并简化应用程序的配置管理。
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
---
slug: 2023-12-15-kubevela-integration
title: 实现高效云原生应用部署运维 - KCL 与 KubeVela 快速集成指南
authors:
name: KCL 团队
title: KCL 团队
tags: [KCL, KubeVela]
---

![cover](/img/blog/2023-12-15-kubevela-integration/cover.png)

# 前言

[KubeVela](https://kubevela.net/) 是一个 CNCF 基金会托管的现代的应用交付系统,它基于 Open Application Model(OAM)规范构建,旨在屏蔽 Kubernetes 的复杂性,提供一套简单易用的命令行工具和 APIs,让开发者无需关心底层细节即可部署和运维云原生应用。

[KCL](https://kcl-lang.io) 是一个 CNCF 基金会托管的面向云原生场景的配置及策略语言,期望通过成熟的编程语言技术和实践来改进对大量繁杂配置比如云原生 Kubernetes 配置场景的编写,致力于构建围绕配置的更好的模块化、扩展性和稳定性,更简单的逻辑编写,以及更简单的自动化和生态工具集成。

KCL 建立在一个完全开放的云原生世界当中,不与任何编排/引擎工具或者 Kubernetes 控制器绑定,可以同时为 Kubernetes 客户端和运行时提供 API 抽象、组合和校验的能力。

用户可以根据场景选择合适的云原生工具比如 Kubectl, Helm, Kustomize, KPT, KusionStack, KubeVela, Helmfile, Crossplane 或 ArgoCD 等来和 KCL 结合将配置生效到集群。

![integration](/img/blog/2023-12-15-kubevela-integration/integration.png)

本篇文章是将 KCL 与 KubeVela 一起使用实现高效云原生应用部署运维的系列文章第一篇,后续我们会分享更多高级用法,尽情期待。

## 将 KCL 与 KubeVela 一起使用

将 KCL 与 KubeVela 一起使用具有如下好处:

- **更简单的配置**:在客户端层面为 KubeVela OAM 配置提供更强的模版化能力如条件,循环等,减少样板 YAML 书写,同时复用 KCL 模型库和工具链生态,提升配置及策略编写的体验和管理效率。
- **更好的可维护性**:通过 KCL 可以提供更有利于版本控制和团队协作的配置文件结构,而不是围绕 YAML 进行配置,同时搭配 KCL 编写的 OAM 应用模型,可以使得应用配置更易于维护和迭代。
- **更简化的操作**:结合 KCL 的配置简洁性和 KubeVela 的易用性,可以简化日常的操作任务,比如部署更新、扩展或回滚应用。开发者可以更加专注于应用本身,而不是部署过程中的繁琐细节。
- **更好的跨团队协作**:通过 KCL 配置分块编写以及包管理能力与 KubeVela 结合使用,可以定义更清晰的界限,使得不同的团队(如开发、测试和运维团队)可以有条理地协作。每个团队可以专注于其职责范围内的任务,分别交付、分享和复用各自的配置,而不用担心其他方面的细节。

## 工作流程

![workflow](/img/blog/2023-12-15-kubevela-integration/workflow.png)

在此示例中,我们使用 KCL Playground 应用为例(这是使用 Go 和 HTML5 编写的应用),同时使用 KCL 定义需要部署的 OAM 配置

整体工作流程如下

1. 应用代码开发产出 Docker 镜像
2. 使用 KCL 编写 OAM 配置
3. 使用 KubeVela 发布配置
4. 验证应用运行情况

## 具体步骤

### 0. 先决条件

- 熟悉 Unix/Linux 的基本命令
- 熟悉 Git 使用
- 了解 Kubernetes 基本知识
- 了解 KubeVela
- 了解 KCL 基本知识

### 1. 配置 Kubernetes 集群

- 安装 [K3d](https://github.com/k3d-io/k3d) 并创建一个集群

```bash
k3d cluster create
```

> 注意:你可以在此方案中使用其他方式创建您自己的 Kubernetes 集群,如 kind, minikube 等。
### 2. 安装 KubeVela

- 安装 KubeVela CLI

```bash
curl -fsSl https://kubevela.net/script/install.sh | bash
```

- 安装 KubeVela Core

```bash
vela install
```

### 3. 安装 KCL 并编写配置

- 安装 KCL

```bash
curl -fsSL https://kcl-lang.io/script/install-cli.sh | /bin/bash
```

- 新建工程并添加 OAM 依赖

```shell
kcl mod init kcl-play-svc && cd kcl-play-svc && kcl mod add oam
```

- 在 main.k 中编写如下代码

```python
import oam

oam.Application {
metadata.name = "kcl-play-svc"
spec.components = [{
name = metadata.name
type = "webservice"
properties = {
image = "kcllang/kcl"
ports = [{port = 80, expose = True}]
cmd = ["kcl", "play"]
}
}]
}
```

### 4. 部署应用并验证

- 下发配置

```shell
kcl run | vela up -f -
```

- 端口转发

```shell
vela port-forward kcl-play-svc
```

然后我们可以在浏览器中看到 KCL Playground 应用成功运行

![kcl-play-svc](/img/blog/2023-12-15-kubevela-integration/kcl-play-svc.png)

## 结论

通过本篇文章的教程,我们可以使用 KubeVela 和 KCL 等初步部署云原生应用,后续我们将通过更多文章讲解如何在客户端使用 KCL 进一步扩展 KubeVela 的能力

- 使用 KCL 的继承、组合和校验手段扩展 OAM 模型,比如根据您的基础设施或者组织基于 OAM 定义更适合的应用抽象模型
- 使用 KCL 配置分块编写,条件,逻辑,循环和模块化能力更好地组织 OAM 多环境配置,提升模版化能力,比如将较长的 App Definition 分散到不同的文件进行组织,减少样板配置
- 与 KusionStack 和 ArgoCD 等项目进一步集成实现更好的 GitOps
- 将更多的云原生能力或 Kubernetes Operator 如 KubeBlocks 和 Crossplane 等实现更好的数据库运维以及统一的云 API 和 Kubernetes API 可编程接入
- 其他更多使用场景...
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 353d008

Please sign in to comment.