Skip to content

An implementation of MURA Dataset Towards Radiologist-Level Abnormality Detection in Musculoskeletal Radiographs

License

Notifications You must be signed in to change notification settings

keshavunni/Musculoskeletal-Radiographs-Abnormality-Classifier

 
 

Repository files navigation

Musculoskeletal Radiographs Abnormality Classifier

Experiments

Network Accuracy (encounter) Precision (encounter) Recall (encounter) F1 (encounter) Kappa (encounter)
DenseNet169 (baseline) .83 (.84) .82 (.82) .87 (.90) .84 (.86) .65 (.65)
MobileNet .81 (.83) .80 (.82) .85 (.89) .82 (.85) .62 (.62)
NASNetMobile .82 (.83) .78 (.80) .89 (.92) .83 (.86) .63 (.63)

Also, ResNet50 in pytorch which achieved equivalent results.

The Mura Dataset

@misc{1712.06957,
Author = {Pranav Rajpurkar and Jeremy Irvin and Aarti Bagul and Daisy Ding and Tony Duan and Hershel Mehta and Brandon Yang and Kaylie Zhu and Dillon Laird and Robyn L. Ball and Curtis Langlotz and Katie Shpanskaya and Matthew P. Lungren and Andrew Ng},
Title = {MURA Dataset: Towards Radiologist-Level Abnormality Detection in Musculoskeletal Radiographs},
Year = {2017},
Eprint = {arXiv:1712.06957},}
Study Normal Abnormal Total
Elbow 1,203 768 1,971
Finger 1,389 753 2,142
Forearm 677 380 1,057
Hand 1,613 602 2,215
Humerus 411 367 778
Shoulder 1,479 1,594 3,073
Wrist 2,295 1,451 3,746
Total 9,067 5,915 14,982
  • Each study contains 1-N views (images)
  • 40,895 multi-view radiographic images

Their results (DenseNet169)

Radiologists (95% CI) Model (95% CI)
Elbow 0.858 (0.707, 0.959) 0.848 (0.691, 0.955)
Finger 0.781 (0.638, 0.871) 0.792 (0.588, 0.933)
Forearm 0.899 (0.804, 0.960) 0.814 (0.633, 0.942)
Hand 0.854 (0.676, 0.958) 0.858 (0.658, 0.978)
Humerus 0.895 (0.774, 0.976) 0.862 (0.709, 0.968)
Shoulder 0.925 (0.811, 0.989) 0.857 (0.667, 0.974)
Wrist 0.958 (0.908, 0.988) 0.968 (0.889, 1.000)
Aggregate F1 0.884 (0.843, 0.918) 0.859 (0.804, 0.905)

About

An implementation of MURA Dataset Towards Radiologist-Level Abnormality Detection in Musculoskeletal Radiographs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 91.1%
  • Python 8.7%
  • Shell 0.2%