-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support upto 4D array as REST input payload.
- Loading branch information
1 parent
b3b7ec8
commit 94abb4f
Showing
4 changed files
with
251 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -19,3 +19,6 @@ google/ | |
# general | ||
.env | ||
.bash_history | ||
|
||
# IDE | ||
.idea/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
package main | ||
|
||
import ( | ||
"encoding/json" | ||
"fmt" | ||
"strings" | ||
) | ||
|
||
func flatten2D(tensor Tensor) ([]interface{}, error) { | ||
totalLen := int(elementCount(tensor.Shape)) | ||
inputData := tensor.Data.([]interface{}) | ||
flattenedOutputData := make([]interface{}, totalLen) | ||
// we need to flatten the array into 1D | ||
var arrayDeserialized []float64 | ||
var arrayBool []bool | ||
var err error | ||
n1, n2 := int(tensor.Shape[0]), int(tensor.Shape[1]) | ||
for j := 0; j < n1; j++ { | ||
str := fmt.Sprintf("%v", inputData[j]) | ||
str = strings.Replace(str, " ", ", ", -1) // convert it to a valid json | ||
if tensor.Datatype == BOOL { | ||
err = json.Unmarshal([]byte(str), &arrayBool) | ||
} else { | ||
err = json.Unmarshal([]byte(str), &arrayDeserialized) | ||
} | ||
if err != nil { | ||
return nil, fmt.Errorf("found error while deserializing the 2D array, with shape: %v. Error: %s", | ||
tensor.Shape, err.Error()) | ||
} | ||
for z := 0; z < n2; z++ { // using row major order to flatten a 2D array. | ||
if tensor.Datatype == BOOL { | ||
flattenedOutputData[z+(j*n2)] = arrayBool[z] | ||
} else { | ||
flattenedOutputData[z+(j*n2)] = arrayDeserialized[z] | ||
} | ||
} | ||
} | ||
return flattenedOutputData, nil | ||
} | ||
|
||
func flatten3D(tensor Tensor) ([]interface{}, error) { | ||
totalLen := int(elementCount(tensor.Shape)) | ||
inputData := tensor.Data.([]interface{}) | ||
flattenedOutputData := make([]interface{}, totalLen) | ||
var arrayDeserialized [][]float64 | ||
var arrayBool [][]bool | ||
var err error | ||
n1, n2, n3 := int(tensor.Shape[0]), int(tensor.Shape[1]), int(tensor.Shape[2]) | ||
for j := 0; j < n1; j++ { | ||
str := fmt.Sprintf("%v", inputData[j]) | ||
str = strings.Replace(str, " ", ", ", -1) | ||
if tensor.Datatype == BOOL { | ||
err = json.Unmarshal([]byte(str), &arrayBool) | ||
} else { | ||
err = json.Unmarshal([]byte(str), &arrayDeserialized) | ||
} | ||
if err != nil { | ||
return nil, fmt.Errorf("found error while deserializing the 3D array, with shape: %v. Error: %s", | ||
tensor.Shape, err.Error()) | ||
} | ||
for z := 0; z < n2; z++ { | ||
for k := 0; k < n3; k++ { | ||
if tensor.Datatype == BOOL { | ||
flattenedOutputData[k+j*n2*n3+z*n3] = arrayBool[z][k] | ||
} else { | ||
flattenedOutputData[k+j*n2*n3+z*n3] = arrayDeserialized[z][k] | ||
} | ||
} | ||
} | ||
} | ||
return flattenedOutputData, nil | ||
} | ||
|
||
func flatten4D(tensor Tensor) ([]interface{}, error) { | ||
totalLen := int(elementCount(tensor.Shape)) | ||
inputData := tensor.Data.([]interface{}) | ||
flattenedOutputData := make([]interface{}, totalLen) | ||
var arrayDeserialized [][][]float64 | ||
var arrayBool [][][]bool | ||
var err error | ||
n1, n2, n3, n4 := int(tensor.Shape[0]), int(tensor.Shape[1]), int(tensor.Shape[2]), int(tensor.Shape[3]) | ||
for j := 0; j < n1; j++ { | ||
str := fmt.Sprintf("%v", inputData[j]) | ||
str = strings.Replace(str, " ", ", ", -1) // convert to a valid json | ||
if tensor.Datatype == BOOL { | ||
err = json.Unmarshal([]byte(str), &arrayBool) | ||
} else { | ||
err = json.Unmarshal([]byte(str), &arrayDeserialized) | ||
|
||
} | ||
if err != nil { | ||
return nil, fmt.Errorf("found error while deserializing the 4D array, with shape: %v. Error: %s", | ||
tensor.Shape, err.Error()) | ||
} | ||
for z := 0; z < n2; z++ { | ||
for k := 0; k < n3; k++ { | ||
for l := 0; l < n4; l++ { | ||
if tensor.Datatype == BOOL { | ||
flattenedOutputData[k*n4+j*n2*n3*n4+z*n3*n4+l] = arrayBool[z][k][l] | ||
} else { | ||
flattenedOutputData[k*n4+j*n2*n3*n4+z*n3*n4+l] = arrayDeserialized[z][k][l] | ||
} | ||
} | ||
} | ||
} | ||
} | ||
return flattenedOutputData, nil | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
package main | ||
|
||
import ( | ||
"github.com/google/go-cmp/cmp" | ||
"testing" | ||
) | ||
|
||
var inputTensor2D = Tensor{ | ||
Name: "test_tensor2d", | ||
Datatype: "FP32", | ||
Shape: []int64{2, 64}, | ||
Parameters: nil, | ||
Data: []interface{}{ | ||
[]interface{}{0.0, 0.0, 1.0, 11.0, 14.0, 15.0, 3.0, 0.0, 0.0, 1.0, 13.0, 16.0, 12.0, 16.0, 8.0, 0.0, 0.0, 8.0, | ||
16.0, 4.0, 6.0, 16.0, 5.0, 0.0, 0.0, 5.0, 15.0, 11.0, 13.0, 14.0, 0.0, 0.0, 0.0, 0.0, 2.0, 12.0, 16.0, 13.0, | ||
0.0, 0.0, 0.0, 0.0, 0.0, 13.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 16.0, 16.0, 16.0, 7.0, 0.0, 0.0, 0.0, | ||
0.0, 11.0, 13.0, 12.0, 1.0, 0.0}, | ||
[]interface{}{2.0, 1.0, 4.0, 9.0, 8.0, 16.0, 2.0, 7.0, 9.0, 1.0, 12.0, 16.0, 12.0, 16.0, 8.0, 0.0, 0.0, 8.0, | ||
16.0, 4.0, 6.0, 16.0, 5.0, 0.0, 0.0, 5.0, 15.0, 11.0, 13.0, 14.0, 0.0, 0.0, 0.0, 0.0, 2.0, 12.0, 16.0, 13.0, | ||
0.0, 0.0, 0.0, 0.0, 0.0, 13.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 16.0, 16.0, 16.0, 7.0, 0.0, 0.0, 0.0, | ||
0.0, 11.0, 13.0, 12.0, 1.0, 0.0}, | ||
}, | ||
} | ||
|
||
var inputTensor3D = Tensor{ | ||
Name: "test_tensor3d", | ||
Datatype: "FP32", | ||
Shape: []int64{2, 2, 32}, | ||
Parameters: nil, | ||
Data: []interface{}{ | ||
[]interface{}{ | ||
[]interface{}{0.0, 0.0, 1.0, 11.0, 14.0, 15.0, 3.0, 0.0, 0.0, 1.0, 13.0, 16.0, 12.0, 16.0, 8.0, 0.0, 0.0, | ||
8.0, 16.0, 4.0, 6.0, 16.0, 5.0, 0.0, 0.0, 5.0, 15.0, 11.0, 13.0, 14.0, 0.0, 0.0}, | ||
[]interface{}{0.0, 0.0, 2.0, 12.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 13.0, 16.0, 16.0, 6.0, 0.0, 0.0, | ||
0.0, 0.0, 16.0, 16.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 11.0, 13.0, 12.0, 1.0, 0.0}, | ||
}, | ||
[]interface{}{ | ||
[]interface{}{2.0, 1.0, 4.0, 9.0, 8.0, 16.0, 2.0, 7.0, 9.0, 1.0, 12.0, 16.0, 12.0, 16.0, 8.0, 0.0, 0.0, | ||
8.0, 16.0, 4.0, 6.0, 16.0, 5.0, 0.0, 0.0, 5.0, 15.0, 11.0, 13.0, 14.0, 0.0, 0.0}, | ||
[]interface{}{0.0, 0.0, 2.0, 12.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 13.0, 16.0, 16.0, 6.0, 0.0, 0.0, | ||
0.0, 0.0, 16.0, 16.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 11.0, 13.0, 12.0, 1.0, 0.0}, | ||
}, | ||
}, | ||
} | ||
|
||
var inputTensor4D = Tensor{ | ||
Name: "test_tensor4d", | ||
Datatype: "FP32", | ||
Shape: []int64{2, 2, 2, 16}, | ||
Parameters: nil, | ||
Data: []interface{}{ | ||
[]interface{}{ | ||
[]interface{}{ | ||
[]interface{}{0.0, 0.0, 1.0, 11.0, 14.0, 15.0, 3.0, 0.0, 0.0, 1.0, 13.0, 16.0, 12.0, 16.0, 8.0, 0.0}, | ||
[]interface{}{0.0, 8.0, 16.0, 4.0, 6.0, 16.0, 5.0, 0.0, 0.0, 5.0, 15.0, 11.0, 13.0, 14.0, 0.0, 0.0}, | ||
}, | ||
[]interface{}{ | ||
[]interface{}{0.0, 0.0, 2.0, 12.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 13.0, 16.0, 16.0, 6.0, 0.0}, | ||
[]interface{}{0.0, 0.0, 0.0, 16.0, 16.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 11.0, 13.0, 12.0, 1.0, 0.0}, | ||
}, | ||
}, | ||
[]interface{}{ | ||
[]interface{}{ | ||
[]interface{}{2.0, 1.0, 4.0, 9.0, 8.0, 16.0, 2.0, 7.0, 9.0, 1.0, 12.0, 16.0, 12.0, 16.0, 8.0, 0.0}, | ||
[]interface{}{0.0, 8.0, 16.0, 4.0, 6.0, 16.0, 5.0, 0.0, 0.0, 5.0, 15.0, 11.0, 13.0, 14.0, 0.0, 0.0}, | ||
}, | ||
[]interface{}{ | ||
[]interface{}{0.0, 0.0, 2.0, 12.0, 16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 13.0, 16.0, 16.0, 6.0, 0.0}, | ||
[]interface{}{0.0, 0.0, 0.0, 16.0, 16.0, 16.0, 7.0, 0.0, 0.0, 0.0, 0.0, 11.0, 13.0, 12.0, 1.0, 0.0}, | ||
}, | ||
}, | ||
}, | ||
} | ||
|
||
var expectedOutput = []interface{}{0.0, 0.0, 1.0, 11.0, 14.0, 15.0, 3.0, 0.0, 0.0, 1.0, 13.0, 16.0, 12.0, 16.0, 8.0, | ||
0.0, 0.0, 8.0, 16.0, 4.0, 6.0, 16.0, 5.0, 0.0, 0.0, 5.0, 15.0, 11.0, 13.0, 14.0, 0.0, 0.0, 0.0, 0.0, 2.0, 12.0, | ||
16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 13.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 16.0, 16.0, 16.0, 7.0, 0.0, 0.0, | ||
0.0, 0.0, 11.0, 13.0, 12.0, 1.0, 0.0, 2.0, 1.0, 4.0, 9.0, 8.0, 16.0, 2.0, 7.0, 9.0, 1.0, 12.0, 16.0, 12.0, 16.0, | ||
8.0, 0.0, 0.0, 8.0, 16.0, 4.0, 6.0, 16.0, 5.0, 0.0, 0.0, 5.0, 15.0, 11.0, 13.0, 14.0, 0.0, 0.0, 0.0, 0.0, 2.0, 12.0, | ||
16.0, 13.0, 0.0, 0.0, 0.0, 0.0, 0.0, 13.0, 16.0, 16.0, 6.0, 0.0, 0.0, 0.0, 0.0, 16.0, 16.0, 16.0, 7.0, 0.0, 0.0, | ||
0.0, 0.0, 11.0, 13.0, 12.0, 1.0, 0.0} | ||
|
||
func Test_flatten2D(t *testing.T) { | ||
data, err := flatten2D(inputTensor2D) | ||
if err != nil { | ||
t.Errorf("Failed to parse 2D array. %s", err.Error()) | ||
} | ||
if len(data) != int(elementCount(inputTensor2D.Shape)) { | ||
t.Errorf("conversion failed, output array should have length: %d", | ||
int(elementCount(inputTensor2D.Shape))) | ||
} | ||
if d := cmp.Diff(data, expectedOutput); d != "" { | ||
t.Errorf("diff: %v", d) | ||
} | ||
} | ||
|
||
func Test_flatten3D(t *testing.T) { | ||
data, err := flatten3D(inputTensor3D) | ||
if err != nil { | ||
t.Errorf("Failed to parse 3D array. %s", err.Error()) | ||
} | ||
if len(data) != int(elementCount(inputTensor3D.Shape)) { | ||
t.Errorf("conversion failed, output array should have length: %d", | ||
int(elementCount(inputTensor3D.Shape))) | ||
} | ||
if d := cmp.Diff(data, expectedOutput); d != "" { | ||
t.Errorf("diff: %v", d) | ||
} | ||
} | ||
|
||
func Test_flatten4D(t *testing.T) { | ||
data, err := flatten4D(inputTensor4D) | ||
if err != nil { | ||
t.Errorf("Failed to parse 4D array. %s", err.Error()) | ||
} | ||
if len(data) != int(elementCount(inputTensor4D.Shape)) { | ||
t.Errorf("conversion failed, output array should have length: %d", | ||
int(elementCount(inputTensor4D.Shape))) | ||
} | ||
if d := cmp.Diff(data, expectedOutput); d != "" { | ||
t.Errorf("diff: %v", d) | ||
} | ||
} |