Skip to content

Practice Machine Learning Free Tutorials | This repo collects 370 of free tutorials for Machine Learning. Machine Learning is transforming industries across the globe. This Skill Tree presents a systematic approach to learning ML concepts and techniques. Designed for beginners, it provides a clea...

Notifications You must be signed in to change notification settings

labex-labs/ml-free-tutorials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

15 Commits
Β 
Β 

Repository files navigation

Machine Learning Free Tutorials

Black Friday

Black Friday 2024 & Cyber Monday 2024 Deals | Best Price of the Year

Machine Learning is transforming industries across the globe. This Skill Tree presents a systematic approach to learning ML concepts and techniques. Designed for beginners, it provides a clear roadmap to understand algorithms, model training, and data analysis. Hands-on, non-video courses and practical exercises in an interactive ML playground ensure you develop real-world skills in building and deploying machine learning models.

Index Name Difficulty Tutorial Link
001 πŸ“– Your First Python Lab β˜…β˜†β˜† πŸ”— View
002 πŸ“– Python Data Types and Operators β˜…β˜†β˜† πŸ”— View
003 πŸ“– Python Control Structures β˜…β˜†β˜† πŸ”— View
004 πŸ“– Python Functions and Modules β˜…β˜†β˜† πŸ”— View
005 πŸ“– Python Data Structures β˜…β˜†β˜† πŸ”— View
006 πŸ“– Linear Models in Scikit-Learn β˜…β˜†β˜† πŸ”— View
007 πŸ“– Discriminant Analysis Classifiers Explained β˜…β˜†β˜† πŸ”— View
008 πŸ“– Exploring Scikit-Learn Datasets and Estimators β˜…β˜†β˜† πŸ”— View
009 πŸ“– Kernel Ridge Regression β˜…β˜†β˜† πŸ”— View
010 πŸ“– Supervised Learning with Scikit-Learn β˜…β˜†β˜† πŸ”— View
011 πŸ“– Model Selection: Choosing Estimators and Their Parameters β˜…β˜†β˜† πŸ”— View
012 πŸ“– Supervised Learning with Support Vectors β˜…β˜†β˜† πŸ”— View
013 πŸ“– Exploring Scikit-Learn SGD Classifiers β˜…β˜†β˜† πŸ”— View
014 πŸ“– Unsupervised Learning: Seeking Representations of the Data β˜…β˜†β˜† πŸ”— View
015 πŸ“– Implementing Stochastic Gradient Descent β˜…β˜†β˜† πŸ”— View
016 πŸ“– Working with Text Data β˜…β˜†β˜† πŸ”— View
017 πŸ“– Gaussian Process Regression and Classification β˜…β˜†β˜† πŸ”— View
018 πŸ“– Dimensional Reduction with PLS Algorithms β˜…β˜†β˜† πŸ”— View
019 πŸ“– Naive Bayes Example β˜…β˜†β˜† πŸ”— View
020 πŸ“– Decision Tree Classification with Scikit-Learn β˜…β˜†β˜† πŸ”— View
021 πŸ“– Concepts and Syntax of Tensorflow 2 β˜…β˜†β˜† πŸ”— View
022 πŸ“– Implementation of Computing Derivative and Automatic Differential β˜…β˜†β˜† πŸ”— View
023 πŸ“– Linear Regression Implemented by Tensorflow 2 β˜…β˜†β˜† πŸ”— View
024 πŸ“– Polynomial Regression Implemented by Low Level Api β˜…β˜†β˜† πŸ”— View
025 πŸ“– Shallow Neural Network Implemented by Tensorflow 2 β˜…β˜†β˜† πŸ”— View
026 πŸ“– Classification of Car Safety Evaluation Dataset β˜…β˜†β˜† πŸ”— View
027 πŸ“– Deep Neural Network Implemented by Tensorflow 2 β˜…β˜†β˜† πŸ”— View
028 πŸ“– Implementation of Classic Convolutional Neural Network β˜…β˜†β˜† πŸ”— View
029 πŸ“– Tensorflow 2 Model Saving and Restoring β˜…β˜†β˜† πŸ”— View
030 πŸ“– Getting Started with Images β˜…β˜†β˜† πŸ”— View
031 πŸ“– Basic Operations on Image β˜…β˜†β˜† πŸ”— View
032 πŸ“– Getting Started with Videos β˜…β˜†β˜† πŸ”— View
033 πŸ“– Arithmetic Operations on Images β˜…β˜†β˜† πŸ”— View
034 πŸ“– Lab Working with Color Spaces β˜…β˜†β˜† πŸ”— View
035 πŸ“– Introduction to Supervised Learning β˜…β˜†β˜† πŸ”— View
036 πŸ“– Linear Regression Fundamentals β˜…β˜†β˜† πŸ”— View
037 πŸ“– Prediction for Beijing Housing Prices β˜…β˜†β˜† πŸ”— View
038 πŸ“– Nonlinear Data Regression Techniques β˜…β˜†β˜† πŸ”— View
039 πŸ“– Prediction for Bitcoin Price β˜…β˜†β˜† πŸ”— View
040 πŸ“– Ridge Regression and Lasso Regression β˜…β˜†β˜† πŸ”— View
041 πŸ“– Calculation of Ridge Regression Coefficient β˜…β˜†β˜† πŸ”— View
042 πŸ“– Logistic Regression Classification with Scikit-Learn β˜…β˜†β˜† πŸ”— View
043 πŸ“– K Nearest Neighbor Algorithm β˜…β˜†β˜† πŸ”— View
044 πŸ“– Probabilistic Classification with Naive Bayes β˜…β˜†β˜† πŸ”— View
045 πŸ“– Implementation of Gaussian Distribution Function and Draw β˜…β˜†β˜† πŸ”— View
046 πŸ“– Nonlinear Pattern Recognition Techniques β˜…β˜†β˜† πŸ”— View
047 πŸ“– Perceptron and Artificial Neural Network β˜…β˜†β˜† πŸ”— View
048 πŸ“– Train Handwritten Digits Recognition Neural Network β˜…β˜†β˜† πŸ”— View
049 πŸ“– Decision Tree Classification with Python β˜…β˜†β˜† πŸ”— View
050 πŸ“– Bagging and Boosting Method β˜…β˜†β˜† πŸ”— View
051 πŸ“– Quickly Select Models with Cross Validation β˜…β˜†β˜† πŸ”— View
052 πŸ“– Supervised and Unsupervised Learning Exploration β˜…β˜†β˜† πŸ”— View
053 πŸ“– Centroid Based Clustering β˜…β˜†β˜† πŸ”— View
054 πŸ“– Image Compression Using Mini Batch K Means β˜…β˜†β˜† πŸ”— View
055 πŸ“– Hierarchical Clustering Exploration for Clustering β˜…β˜†β˜† πŸ”— View
056 πŸ“– Hierarchical Clustering of Wheat Seeds β˜…β˜†β˜† πŸ”— View
057 πŸ“– Density Based Clustering β˜…β˜†β˜† πŸ”— View
058 πŸ“– Density-Based Clustering Application β˜…β˜†β˜† πŸ”— View
059 πŸ“– Spectral Clustering and Other Clustering Methods β˜…β˜†β˜† πŸ”— View
060 πŸ“– Evaluation of Common Clustering Methods β˜…β˜†β˜† πŸ”— View
061 πŸ“– Introduction to Deep Learning β˜…β˜†β˜† πŸ”— View
062 πŸ“– Guide of Tensorflow β˜…β˜†β˜† πŸ”— View
063 πŸ“– Building Multilayer Neural Network with TensorFlow β˜…β˜†β˜† πŸ”— View
064 πŸ“– Guide of Keras β˜…β˜†β˜† πŸ”— View
065 πŸ“– Build a Sequential Model with Keras β˜…β˜†β˜† πŸ”— View
066 πŸ“– Guide of PyTorch β˜…β˜†β˜† πŸ”— View
067 πŸ“– Linear Regression with PyTorch β˜…β˜†β˜† πŸ”— View
068 πŸ“– Adjusting for Chance in Clustering Performance Evaluation β˜…β˜†β˜† πŸ”— View
069 πŸ“– Probability Calibration of Classifiers β˜…β˜†β˜† πŸ”— View
070 πŸ“– Plot Causal Interpretation β˜…β˜†β˜† πŸ”— View
071 πŸ“– Classifier Chain Ensemble β˜…β˜†β˜† πŸ”— View
072 πŸ“– Segmenting Greek Coins with Spectral Clustering β˜…β˜†β˜† πŸ”— View
073 πŸ“– Scikit-Learn Column Transformer β˜…β˜†β˜† πŸ”— View
074 πŸ“– Manifold Learning Comparison β˜…β˜†β˜† πŸ”— View
075 πŸ“– Cross-Validation Techniques with Scikit-Learn β˜…β˜†β˜† πŸ”— View
076 πŸ“– Comparing Dimensionality Reduction Strategies β˜…β˜†β˜† πŸ”— View
077 πŸ“– Gaussian Mixture Model β˜…β˜†β˜† πŸ”— View
078 πŸ“– Density Estimation with Gaussian Mixture Models β˜…β˜†β˜† πŸ”— View
079 πŸ“– Gaussian Mixture Model Sine Curve β˜…β˜†β˜† πŸ”— View
080 πŸ“– Prediction Intervals for Gradient Boosting Regression β˜…β˜†β˜† πŸ”— View
081 πŸ“– Gradient Boosting Regression β˜…β˜†β˜† πŸ”— View
082 πŸ“– Image Denoising Using Dictionary Learning β˜…β˜†β˜† πŸ”— View
083 πŸ“– Inductive Clustering with Scikit-Learn β˜…β˜†β˜† πŸ”— View
084 πŸ“– Iris Flower Binary Classification Using SVM β˜…β˜†β˜† πŸ”— View
085 πŸ“– K-Means++ Clustering with Scikit-Learn β˜…β˜†β˜† πŸ”— View
086 πŸ“– Semi-Supervised Learning Withel Spreading β˜…β˜†β˜† πŸ”— View
087 πŸ“– Scikit-Learn Lasso Path β˜…β˜†β˜† πŸ”— View
088 πŸ“– LinearSVC Support Vectors β˜…β˜†β˜† πŸ”— View
089 πŸ“– Understanding Model Complexity β˜…β˜†β˜† πŸ”— View
090 πŸ“– Face Completion with Multi-Output Estimators β˜…β˜†β˜† πŸ”— View
091 πŸ“– Dimensionality Reduction with Neighborhood Components Analysis β˜…β˜†β˜† πŸ”— View
092 πŸ“– Linear Regression with Sparsity Example β˜…β˜†β˜† πŸ”— View
093 πŸ“– Ordinary Least Squares and Ridge Regression Variance β˜…β˜†β˜† πŸ”— View
094 πŸ“– One-Class SVM for Novelty Detection β˜…β˜†β˜† πŸ”— View
095 πŸ“– Advanced Plotting with Partial Dependence β˜…β˜†β˜† πŸ”— View
096 πŸ“– Principal Component Analysis on Iris Dataset β˜…β˜†β˜† πŸ”— View
097 πŸ“– Plot Permutation Importance β˜…β˜†β˜† πŸ”— View
098 πŸ“– Permutation Importance on Breast Cancer Dataset β˜…β˜†β˜† πŸ”— View
099 πŸ“– Polynomial and Spline Interpolation β˜…β˜†β˜† πŸ”— View
100 πŸ“– Prediction Latency with Scikit-Learn Estimators β˜…β˜†β˜† πŸ”— View
101 πŸ“– Robust Linear Model Estimation β˜…β˜†β˜† πŸ”— View
102 πŸ“– RBF SVM Parameter Tuning β˜…β˜†β˜† πŸ”— View
103 πŸ“– Nearest Neighbors Regression β˜…β˜†β˜† πŸ”— View
104 πŸ“– Scikit-Learn Ridge Regression Example β˜…β˜†β˜† πŸ”— View
105 πŸ“– Convex Loss Functions Comparison β˜…β˜†β˜† πŸ”— View
106 πŸ“– Weighted Dataset Decision Function Plotting β˜…β˜†β˜† πŸ”— View
107 πŸ“– Combine Predictors Using Stacking β˜…β˜†β˜† πŸ”— View
108 πŸ“– Visualizing Stock Market Structure β˜…β˜†β˜† πŸ”— View
109 πŸ“– SVM Kernel Data Classification β˜…β˜†β˜† πŸ”— View
110 πŸ“– Exploring Linear SVM Parameters β˜…β˜†β˜† πŸ”— View
111 πŸ“– Non-Linear SVM Classification β˜…β˜†β˜† πŸ”— View
112 πŸ“– Visualize High-Dimensional Data with t-SNE β˜…β˜†β˜† πŸ”— View
113 πŸ“– Comparing Different Categorical Encoders β˜…β˜†β˜† πŸ”— View
114 πŸ“– Support Vector Machine Weighted Samples β˜…β˜†β˜† πŸ”— View
115 πŸ“– Novelty and Outlier Detection Using Scikit-Learn β˜…β˜†β˜† πŸ”— View
116 πŸ“– Random Projection Dimensionality Reduction β˜…β˜†β˜† πŸ”— View
117 πŸ“– Curve Fitting with Bayesian Ridge Regression β˜…β˜†β˜† πŸ”— View
118 πŸ“– Nearest Neighbors Classification β˜…β˜†β˜† πŸ”— View
119 πŸ“– Exploring K-Means Clustering with Python β˜…β˜†β˜† πŸ”— View
120 πŸ“– Compare Cross Decomposition Methods β˜…β˜†β˜† πŸ”— View
121 πŸ“– Plot Concentration Prior β˜…β˜†β˜† πŸ”— View
122 πŸ“– SVM Classification Using Custom Kernel β˜…β˜†β˜† πŸ”— View
123 πŸ“– Cross-Validation on Digits Dataset β˜…β˜†β˜† πŸ”— View
124 πŸ“– Feature Agglomeration for High-Dimensional Data β˜…β˜†β˜† πŸ”— View
125 πŸ“– Agglomerative Clustering on Digits Dataset β˜…β˜†β˜† πŸ”— View
126 πŸ“– Comparison of F-Test and Mutual Information β˜…β˜†β˜† πŸ”— View
127 πŸ“– Vector Quantization with KBinsDiscretizer β˜…β˜†β˜† πŸ”— View
128 πŸ“– Faces Dataset Decompositions β˜…β˜†β˜† πŸ”— View
129 πŸ“– Gaussian Process Classification on Iris Dataset β˜…β˜†β˜† πŸ”— View
130 πŸ“– Gaussian Process Classification β˜…β˜†β˜† πŸ”— View
131 πŸ“– Gaussian Process Classification on XOR Dataset β˜…β˜†β˜† πŸ”— View
132 πŸ“– Nonlinear Predictive Modeling Using Gaussian Process β˜…β˜†β˜† πŸ”— View
133 πŸ“– Fit Gaussian Process Regression Model β˜…β˜†β˜† πŸ”— View
134 πŸ“– Gaussian Process Regression: Kernels β˜…β˜†β˜† πŸ”— View
135 πŸ“– Early Stopping of Gradient Boosting β˜…β˜†β˜† πŸ”— View
136 πŸ“– Blind Source Separation β˜…β˜†β˜† πŸ”— View
137 πŸ“– Independent Component Analysis with FastICA and PCA β˜…β˜†β˜† πŸ”— View
138 πŸ“– Iris Flower Classification with Scikit-learn β˜…β˜†β˜† πŸ”— View
139 πŸ“– SVM Classifier on Iris Dataset β˜…β˜†β˜† πŸ”— View
140 πŸ“– Simple 1D Kernel Density Estimation β˜…β˜†β˜† πŸ”— View
141 πŸ“– Active Learning Withel Propagation β˜…β˜†β˜† πŸ”— View
142 πŸ“– Lasso and Elastic Net β˜…β˜†β˜† πŸ”— View
143 πŸ“– Discriminant Analysis Classification Algorithms β˜…β˜†β˜† πŸ”— View
144 πŸ“– Hierarchical Clustering with Scikit-Learn β˜…β˜†β˜† πŸ”— View
145 πŸ“– Local Outlier Factor for Novelty Detection β˜…β˜†β˜† πŸ”— View
146 πŸ“– Outlier Detection with LOF β˜…β˜†β˜† πŸ”— View
147 πŸ“– Logistic Regression Model β˜…β˜†β˜† πŸ”— View
148 πŸ“– Regularization Path of L1-Logistic Regression β˜…β˜†β˜† πŸ”— View
149 πŸ“– Comparison of Covariance Estimators β˜…β˜†β˜† πŸ”— View
150 πŸ“– Robust Covariance Estimation and Mahalanobis Distances Relevance β˜…β˜†β˜† πŸ”— View
151 πŸ“– Manifold Learning on Spherical Data β˜…β˜†β˜† πŸ”— View
152 πŸ“– Joint Feature Selection with Multi-Task Lasso β˜…β˜†β˜† πŸ”— View
153 πŸ“– Linear Regression Example β˜…β˜†β˜† πŸ”— View
154 πŸ“– OPTICS Clustering Algorithm β˜…β˜†β˜† πŸ”— View
155 πŸ“– Principal Components Analysis β˜…β˜†β˜† πŸ”— View
156 πŸ“– Random Classification Dataset Plotting β˜…β˜†β˜† πŸ”— View
157 πŸ“– Multilabel Dataset Generation with Scikit-Learn β˜…β˜†β˜† πŸ”— View
158 πŸ“– Robust Covariance Estimation in Python β˜…β˜†β˜† πŸ”— View
159 πŸ“– Applying Regularization Techniques with SGD β˜…β˜†β˜† πŸ”— View
160 πŸ“– Sparse Coding with Precomputed Dictionary β˜…β˜†β˜† πŸ”— View
161 πŸ“– Support Vector Regression β˜…β˜†β˜† πŸ”— View
162 πŸ“– Swiss Roll and Swiss-Hole Reduction β˜…β˜†β˜† πŸ”— View
163 πŸ“– Theil-Sen Regression with Python Scikit-Learn β˜…β˜†β˜† πŸ”— View
164 πŸ“– Compressive Sensing Image Reconstruction β˜…β˜†β˜† πŸ”— View
165 πŸ“– Decision Tree Regression β˜…β˜†β˜† πŸ”— View
166 πŸ“– Multi-Output Decision Tree Regression β˜…β˜†β˜† πŸ”— View
167 πŸ“– Scikit-Learn Libsvm GUI β˜…β˜†β˜† πŸ”— View
168 πŸ“– Wikipedia PageRank with Randomized SVD β˜…β˜†β˜† πŸ”— View
169 πŸ“– Nonlinear Regression with Isotonic β˜…β˜†β˜† πŸ”— View
170 πŸ“– Neural Network Models β˜…β˜†β˜† πŸ”— View
171 πŸ“– Gaussian Mixture Models β˜…β˜†β˜† πŸ”— View
172 πŸ“– Manifold Learning with Scikit-Learn β˜…β˜†β˜† πŸ”— View
173 πŸ“– Biclustering in Scikit-Learn β˜…β˜†β˜† πŸ”— View
174 πŸ“– Decomposing Signals in Components β˜…β˜†β˜† πŸ”— View
175 πŸ“– Covariance Matrix Estimation with Scikit-Learn β˜…β˜†β˜† πŸ”— View
176 πŸ“– Density Estimation Using Kernel Density β˜…β˜†β˜† πŸ”— View
177 πŸ“– Machine Learning Cross-Validation with Python β˜…β˜†β˜† πŸ”— View
178 πŸ“– Feature Extraction with Scikit-Learn β˜…β˜†β˜† πŸ”— View
179 πŸ“– Imputation of Missing Values β˜…β˜†β˜† πŸ”— View
180 πŸ“– Kernel Approximation Techniques in Scikit-Learn β˜…β˜†β˜† πŸ”— View
181 πŸ“– Pairwise Metrics and Kernels in Scikit-Learn β˜…β˜†β˜† πŸ”— View
182 πŸ“– Transforming the Prediction Target β˜…β˜†β˜† πŸ”— View
183 πŸ“– Boosted Decision Tree Regression β˜…β˜†β˜† πŸ”— View
184 πŸ“– Affinity Propagation Clustering β˜…β˜†β˜† πŸ”— View
185 πŸ“– Plot Agglomerative Clustering β˜…β˜†β˜† πŸ”— View
186 πŸ“– Agglomerative Clustering Metrics β˜…β˜†β˜† πŸ”— View
187 πŸ“– Hierarchical Clustering Dendrogram β˜…β˜†β˜† πŸ”— View
188 πŸ“– Data Scaling and Transformation β˜…β˜†β˜† πŸ”— View
189 πŸ“– Bias-Variance Decomposition with Bagging β˜…β˜†β˜† πŸ”— View
190 πŸ“– Comparing BIRCH and MiniBatchKMeans β˜…β˜†β˜† πŸ”— View
191 πŸ“– Bisecting K-Means and Regular K-Means Performance Comparison β˜…β˜†β˜† πŸ”— View
192 πŸ“– Comparing Clustering Algorithms β˜…β˜†β˜† πŸ”— View
193 πŸ“– Image Segmentation with Hierarchical Clustering β˜…β˜†β˜† πŸ”— View
194 πŸ“– Scikit-Learn Confusion Matrix β˜…β˜†β˜† πŸ”— View
195 πŸ“– Shrinkage Covariance Estimation β˜…β˜†β˜† πŸ”— View
196 πŸ“– Cross-Validation with Linear Models β˜…β˜†β˜† πŸ”— View
197 πŸ“– Plot Dict Face Patches β˜…β˜†β˜† πŸ”— View
198 πŸ“– Recognizing Hand-Written Digits β˜…β˜†β˜† πŸ”— View
199 πŸ“– Demonstrating KBinsDiscretizer Strategies β˜…β˜†β˜† πŸ”— View
200 πŸ“– Precompute Gram Matrix for ElasticNet β˜…β˜†β˜† πŸ”— View
201 πŸ“– Random Forest OOB Error Estimation β˜…β˜†β˜† πŸ”— View
202 πŸ“– Pixel Importances with Parallel Forest of Trees β˜…β˜†β˜† πŸ”— View
203 πŸ“– Gaussian Mixture Model Covariances β˜…β˜†β˜† πŸ”— View
204 πŸ“– Gaussian Mixture Model Selection β˜…β˜†β˜† πŸ”— View
205 πŸ“– Probabilistic Predictions with Gaussian Process Classification β˜…β˜†β˜† πŸ”— View
206 πŸ“– Plot GPR Co2 β˜…β˜†β˜† πŸ”— View
207 πŸ“– Gaussian Processes on Discrete Data Structures β˜…β˜†β˜† πŸ”— View
208 πŸ“– Gradient Boosting Regularization β˜…β˜†β˜† πŸ”— View
209 πŸ“– FeatureHasher and DictVectorizer Comparison β˜…β˜†β˜† πŸ”— View
210 πŸ“– Demo of HDBSCAN Clustering Algorithm β˜…β˜†β˜† πŸ”— View
211 πŸ“– Plot Huber vs Ridge β˜…β˜†β˜† πŸ”— View
212 πŸ“– Incremental Principal Component Analysis on Iris Dataset β˜…β˜†β˜† πŸ”— View
213 πŸ“– Logistic Regression Classifier on Iris Dataset β˜…β˜†β˜† πŸ”— View
214 πŸ“– Explicit Feature Map Approximation for RBF Kernels β˜…β˜†β˜† πŸ”— View
215 πŸ“– Empirical Evaluation of K-Means Initialization β˜…β˜†β˜† πŸ”— View
216 πŸ“– Label Propagation Learning β˜…β˜†β˜† πŸ”— View
217 πŸ“– Scikit-Learn Lasso Regression β˜…β˜†β˜† πŸ”— View
218 πŸ“– Step-by-Step Logistic Regression β˜…β˜†β˜† πŸ”— View
219 πŸ“– Map Data to a Normal Distribution β˜…β˜†β˜† πŸ”— View
220 πŸ“– Visualize High-Dimensional Data with MDS β˜…β˜†β˜† πŸ”— View
221 πŸ“– Mean-Shift Clustering Algorithm β˜…β˜†β˜† πŸ”— View
222 πŸ“– Gradient Boosting Monotonic Constraints β˜…β˜†β˜† πŸ”— View
223 πŸ“– Neighborhood Components Analysis β˜…β˜†β˜† πŸ”— View
224 πŸ“– Nearest Centroid Classification β˜…β˜†β˜† πŸ”— View
225 πŸ“– Sparse Signal Recovery with Orthogonal Matching Pursuit β˜…β˜†β˜† πŸ”— View
226 πŸ“– Plot Pca vs Lda β˜…β˜†β˜† πŸ”— View
227 πŸ“– Spectral Clustering for Image Segmentation β˜…β˜†β˜† πŸ”— View
228 πŸ“– Semi-Supervised Classifiers on the Iris Dataset β˜…β˜†β˜† πŸ”— View
229 πŸ“– SVM: Maximum Margin Separating Hyperplane β˜…β˜†β˜† πŸ”— View
230 πŸ“– SVM for Unbalanced Classes β˜…β˜†β˜† πŸ”— View
231 πŸ“– Scikit-Learn Multi-Class SGD Classifier β˜…β˜†β˜† πŸ”— View
232 πŸ“– Plot SGD Separating Hyperplane β˜…β˜†β˜† πŸ”— View
233 πŸ“– Sparse Inverse Covariance Estimation β˜…β˜†β˜† πŸ”— View
234 πŸ“– Species Distribution Modeling β˜…β˜†β˜† πŸ”— View
235 πŸ“– Kernel Density Estimate of Species Distributions β˜…β˜†β˜† πŸ”— View
236 πŸ“– SVM Tie Breaking β˜…β˜†β˜† πŸ”— View
237 πŸ“– Scikit-Learn Elastic-Net Regression Model β˜…β˜†β˜† πŸ”— View
238 πŸ“– Semi-Supervised Learning Algorithms β˜…β˜†β˜† πŸ”— View
239 πŸ“– Unsupervised Clustering with K-Means β˜…β˜†β˜† πŸ”— View
240 πŸ“– Preprocessing Techniques in Scikit-Learn β˜…β˜†β˜† πŸ”— View
241 πŸ“– Color Quantization Using K-Means β˜…β˜†β˜† πŸ”— View
242 πŸ“– Plot Compare GPR KRR β˜…β˜†β˜† πŸ”— View
243 πŸ“– Post Pruning Decision Trees β˜…β˜†β˜† πŸ”— View
244 πŸ“– Digits Classification using Scikit-Learn β˜…β˜†β˜† πŸ”— View
245 πŸ“– Digit Dataset Analysis β˜…β˜†β˜† πŸ”— View
246 πŸ“– Discretizing Continuous Features with KBinsDiscretizer β˜…β˜†β˜† πŸ”— View
247 πŸ“– Plot Forest Hist Grad Boosting Comparison β˜…β˜†β˜† πŸ”— View
248 πŸ“– Plot Forest Iris β˜…β˜†β˜† πŸ”— View
249 πŸ“– Gaussian Mixture Model Initialization Methods β˜…β˜†β˜† πŸ”— View
250 πŸ“– Plot Grid Search Digits β˜…β˜†β˜† πŸ”— View
251 πŸ“– Decision Trees on Iris Dataset β˜…β˜†β˜† πŸ”— View
252 πŸ“– Anomaly Detection with Isolation Forest β˜…β˜†β˜† πŸ”— View
253 πŸ“– Nonparametric Isotonic Regression with Scikit-Learn β˜…β˜†β˜† πŸ”— View
254 πŸ“– Exploring Johnson-Lindenstrauss Lemma with Random Projections β˜…β˜†β˜† πŸ”— View
255 πŸ“– Principal Component Analysis with Kernel PCA β˜…β˜†β˜† πŸ”— View
256 πŸ“– Plot Kernel Ridge Regression β˜…β˜†β˜† πŸ”— View
257 πŸ“– Exploring K-Means Clustering Assumptions β˜…β˜†β˜† πŸ”— View
258 πŸ“– Clustering Analysis with Silhouette Method β˜…β˜†β˜† πŸ”— View
259 πŸ“– Sparse Signal Regression with L1-Based Models β˜…β˜†β˜† πŸ”— View
260 πŸ“– Linear Discriminant Analysis for Classification β˜…β˜†β˜† πŸ”— View
261 πŸ“– Plot Multinomial and One-vs-Rest Logistic Regression β˜…β˜†β˜† πŸ”— View
262 πŸ“– Comparing K-Means and MiniBatchKMeans β˜…β˜†β˜† πŸ”— View
263 πŸ“– Scikit-Learn MLPClassifier: Stochastic Learning Strategies β˜…β˜†β˜† πŸ”— View
264 πŸ“– Nested Cross-Validation for Model Selection β˜…β˜†β˜† πŸ”— View
265 πŸ“– Non-Negative Least Squares Regression β˜…β˜†β˜† πŸ”— View
266 πŸ“– Detecting Outliers in Wine Data β˜…β˜†β˜† πŸ”— View
267 πŸ“– Plot Pca vs Fa Model Selection β˜…β˜†β˜† πŸ”— View
268 πŸ“– Permutation Test Score for Classification β˜…β˜†β˜† πŸ”— View
269 πŸ“– Quantile Regression with Scikit-Learn β˜…β˜†β˜† πŸ”— View
270 πŸ“– Plot Random Forest Regression Multioutput β˜…β˜†β˜† πŸ”— View
271 πŸ“– Hyperparameter Optimization: Randomized Search vs Grid Search β˜…β˜†β˜† πŸ”— View
272 πŸ“– Recursive Feature Elimination β˜…β˜†β˜† πŸ”— View
273 πŸ“– Ridge Regression for Linear Modeling β˜…β˜†β˜† πŸ”— View
274 πŸ“– ROC with Cross Validation β˜…β˜†β˜† πŸ”— View
275 πŸ“– Model-Based and Sequential Feature Selection β˜…β˜†β˜† πŸ”— View
276 πŸ“– Comparing Online Solvers for Handwritten Digit Classification β˜…β˜†β˜† πŸ”— View
277 πŸ“– Spectral Biclustering Algorithm β˜…β˜†β˜† πŸ”— View
278 πŸ“– Spectral Co-Clustering Algorithm β˜…β˜†β˜† πŸ”— View
279 πŸ“– Comparison Between Grid Search and Successive Halving β˜…β˜†β˜† πŸ”— View
280 πŸ“– Scaling Regularization Parameter for SVMs β˜…β˜†β˜† πŸ”— View
281 πŸ“– Plot Topics Extraction with NMF Lda β˜…β˜†β˜† πŸ”— View
282 πŸ“– Decision Tree Analysis β˜…β˜†β˜† πŸ”— View
283 πŸ“– Plotting Validation Curves β˜…β˜†β˜† πŸ”— View
284 πŸ“– Revealing Iris Dataset Structure via Factor Analysis β˜…β˜†β˜† πŸ”— View
285 πŸ“– Class Probabilities with VotingClassifier β˜…β˜†β˜† πŸ”— View
286 πŸ“– Diabetes Prediction Using Voting Regressor β˜…β˜†β˜† πŸ”— View
287 πŸ“– Hierarchical Clustering with Connectivity Constraints β˜…β˜†β˜† πŸ”— View
288 πŸ“– Tuning Hyperparameters of an Estimator β˜…β˜†β˜† πŸ”— View
289 πŸ“– Validation Curves: Plotting Scores to Evaluate Models β˜…β˜†β˜† πŸ”— View
290 πŸ“– Partial Dependence and Individual Conditional Expectation β˜…β˜†β˜† πŸ”— View
291 πŸ“– Permutation Feature Importance β˜…β˜†β˜† πŸ”— View
292 πŸ“– Discrete Versus Real AdaBoost β˜…β˜†β˜† πŸ”— View
293 πŸ“– Multi-Class AdaBoosted Decision Trees β˜…β˜†β˜† πŸ”— View
294 πŸ“– AdaBoost Decision Stump Classification β˜…β˜†β˜† πŸ”— View
295 πŸ“– Comparing Linear Bayesian Regressors β˜…β˜†β˜† πŸ”— View
296 πŸ“– Document Biclustering Using Spectral Co-Clustering Algorithm β˜…β˜†β˜† πŸ”— View
297 πŸ“– Caching Nearest Neighbors β˜…β˜†β˜† πŸ”— View
298 πŸ“– Probability Calibration for 3-Class Classification β˜…β˜†β˜† πŸ”— View
299 πŸ“– Plotting Classification Probability β˜…β˜†β˜† πŸ”— View
300 πŸ“– Plotting Predictions with Cross-Validation β˜…β˜†β˜† πŸ”— View
301 πŸ“– DBSCAN Clustering Algorithm β˜…β˜†β˜† πŸ”— View
302 πŸ“– Image Denoising with Kernel PCA β˜…β˜†β˜† πŸ”— View
303 πŸ“– Kernel Density Estimation β˜…β˜†β˜† πŸ”— View
304 πŸ“– Feature Importance with Random Forest β˜…β˜†β˜† πŸ”— View
305 πŸ“– Gradient Boosting Out-of-Bag Estimates β˜…β˜†β˜† πŸ”— View
306 πŸ“– Lasso Model Selection β˜…β˜†β˜† πŸ”— View
307 πŸ“– Model Selection for Lasso Regression β˜…β˜†β˜† πŸ”— View
308 πŸ“– Plotting Learning Curves β˜…β˜†β˜† πŸ”— View
309 πŸ“– Classify Handwritten Digits with MLP Classifier β˜…β˜†β˜† πŸ”— View
310 πŸ“– Optimizing Model Hyperparameters with GridSearchCV β˜…β˜†β˜† πŸ”— View
311 πŸ“– Text Classification Using Out-of-Core Learning β˜…β˜†β˜† πŸ”— View
312 πŸ“– Hashing Feature Transformation β˜…β˜†β˜† πŸ”— View
313 πŸ“– Recursive Feature Elimination with Cross-Validation β˜…β˜†β˜† πŸ”— View
314 πŸ“– Robust Linear Estimator Fitting β˜…β˜†β˜† πŸ”— View
315 πŸ“– Early Stopping of Stochastic Gradient Descent β˜…β˜†β˜† πŸ”— View
316 πŸ“– Plot Sgdocsvm vs Ocsvm β˜…β˜†β˜† πŸ”— View
317 πŸ“– Multiclass Sparse Logistic Regression β˜…β˜†β˜† πŸ”— View
318 πŸ“– Successive Halving Iterations β˜…β˜†β˜† πŸ”— View
319 πŸ“– Categorical Data Transformation using TargetEncoder β˜…β˜†β˜† πŸ”— View
320 πŸ“– Underfitting and Overfitting β˜…β˜†β˜† πŸ”— View
321 πŸ“– Ensemble Methods Exploration with Scikit-Learn β˜…β˜†β˜† πŸ”— View
322 πŸ“– Feature Selection with Scikit-Learn β˜…β˜†β˜† πŸ”— View
323 πŸ“– Evaluating Machine Learning Model Quality β˜…β˜†β˜† πŸ”— View
324 πŸ“– Plot Digits Pipe β˜…β˜†β˜† πŸ”— View
325 πŸ“– Scikit-Learn Estimators and Pipelines β˜…β˜†β˜† πŸ”— View
326 πŸ“– Feature Transformations with Ensembles of Trees β˜…β˜†β˜† πŸ”— View
327 πŸ“– Balance Model Complexity and Cross-Validated Score β˜…β˜†β˜† πŸ”— View
328 πŸ“– Text Feature Extraction and Evaluation β˜…β˜†β˜† πŸ”— View
329 πŸ“– K-Means Clustering on Handwritten Digits β˜…β˜†β˜† πŸ”— View
330 πŸ“– Multi-Layer Perceptron Regularization β˜…β˜†β˜† πŸ”— View
331 πŸ“– Multi-Label Document Classification β˜…β˜†β˜† πŸ”— View
332 πŸ“– Plot Nca Classification β˜…β˜†β˜† πŸ”— View
333 πŸ“– Outlier Detection Using Scikit-Learn Algorithms β˜…β˜†β˜† πŸ”— View
334 πŸ“– Multiclass ROC Evaluation with Scikit-Learn β˜…β˜†β˜† πŸ”— View
335 πŸ“– Scikit-Learn Visualization API β˜…β˜†β˜† πŸ”— View
336 πŸ“– Polynomial Kernel Approximation with Scikit-Learn β˜…β˜†β˜† πŸ”— View
337 πŸ“– Effect of Varying Threshold for Self-Training β˜…β˜†β˜† πŸ”— View
338 πŸ“– MNIST Multinomial Logistic Regression β˜…β˜†β˜† πŸ”— View
339 πŸ“– Iris Flower Classification using Voting Classifier β˜…β˜†β˜† πŸ”— View
340 πŸ“– Approximate Nearest Neighbors in TSNE β˜…β˜†β˜† πŸ”— View
341 πŸ“– Creating Visualizations with Display Objects β˜…β˜†β˜† πŸ”— View
342 πŸ“– Face Recognition with Eigenfaces and SVMs β˜…β˜†β˜† πŸ”— View
343 πŸ“– Univariate Feature Selection β˜…β˜†β˜† πŸ”— View
344 πŸ“– Building Machine Learning Pipelines with Scikit-Learn β˜…β˜†β˜† πŸ”— View
345 πŸ“– Concatenating Multiple Feature Extraction Methods β˜…β˜†β˜† πŸ”— View
346 πŸ“– Gradient Boosting with Categorical Features β˜…β˜†β˜† πŸ”— View
347 πŸ“– Class Likelihood Ratios to Measure Classification Performance β˜…β˜†β˜† πŸ”— View
348 πŸ“– Impute Missing Data β˜…β˜†β˜† πŸ”— View
349 πŸ“– Plot PCR vs PLS β˜…β˜†β˜† πŸ”— View
350 πŸ“– Feature Selection for SVC on Iris Dataset β˜…β˜†β˜† πŸ”— View
351 πŸ“– Transforming Target for Linear Regression β˜…β˜†β˜† πŸ”— View
352 πŸ“– Multiclass and Multioutput Algorithms β˜…β˜†β˜† πŸ”— View
353 πŸ“– Anomaly Detection Algorithms Comparison β˜…β˜†β˜† πŸ”— View
354 πŸ“– Probability Calibration Curves β˜…β˜†β˜† πŸ”— View
355 πŸ“– Comparison of Calibration of Classifiers β˜…β˜†β˜† πŸ”— View
356 πŸ“– Dimensionality Reduction with Pipeline and GridSearchCV β˜…β˜†β˜† πŸ”— View
357 πŸ“– Detection Error Tradeoff Curve β˜…β˜†β˜† πŸ”— View
358 πŸ“– Precision-Recall Metric for Imbalanced Classification β˜…β˜†β˜† πŸ”— View
359 πŸ“– Column Transformer with Mixed Types β˜…β˜†β˜† πŸ”— View
360 πŸ“– Digit Classification with RBM Features β˜…β˜†β˜† πŸ”— View
361 πŸ“– Semi-Supervised Text Classification β˜…β˜†β˜† πŸ”— View
362 πŸ“– Using Set_output API β˜…β˜†β˜† πŸ”— View
363 πŸ“– Feature Discretization for Classification β˜…β˜†β˜† πŸ”— View
364 πŸ“– Text Document Classification β˜…β˜†β˜† πŸ”— View
365 πŸ“– Scikit-Learn Iterative Imputer β˜…β˜†β˜† πŸ”— View
366 πŸ“– Manifold Learning on Handwritten Digits β˜…β˜†β˜† πŸ”— View
367 πŸ“– Constructing Scikit-Learn Pipelines β˜…β˜†β˜† πŸ”— View
368 πŸ“– Feature Scaling in Machine Learning β˜…β˜†β˜† πŸ”— View
369 πŸ“– Pipelines and Composite Estimators β˜…β˜†β˜† πŸ”— View
370 πŸ“– Scikit-Learn Classifier Comparison β˜…β˜†β˜† πŸ”— View

More Free Tutorials

More

About

Practice Machine Learning Free Tutorials | This repo collects 370 of free tutorials for Machine Learning. Machine Learning is transforming industries across the globe. This Skill Tree presents a systematic approach to learning ML concepts and techniques. Designed for beginners, it provides a clea...

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published