Uploaded 3 results.
$ python train_u2gnn_sup.py --model_name KAGGLE --load_epoch 33 --test_only
Namespace(batch_size=16, dropout=0.5, hidden_size=128, learning_rate=0.0001, load_epoch=33, model_name='KAGGLE', num_epochs=50, num_hidden_layers=1, num_neighbors=16, num_timesteps=1, test_only=True)
Loading data...
# data: 5000 | # classes: 3 | # max node tag: 367
Loading data finished.
node features dimension: 370
Using /home/abc/NoreGraph/runs/U2GNNsup/KAGGLE
state loaded from epoch 33 - test_acc: 72.17%
$ python train_ugcn.py
usage: train_ugcn.py [-h] [--model_name MODEL_NAME]
[--learning_rate LEARNING_RATE]
[--batch_size BATCH_SIZE]
[--num_epochs NUM_EPOCHS]
[--num_sampled NUM_SAMPLED]
[--hidden_size HIDDEN_SIZE]
[--num_conv_layers NUM_CONV_LAYERS]
[--dropout DROPOUT]
[--no_soft_placement]
[--log_device_placement]
[--load_epoch LOAD_EPOCH]
[--test_only]
optional arguments:
-h, --help show this help message and exit
--model_name Output directory name (default: KAGGLE)
--learning_rate Learning rate (default: 0.0001)
--batch_size Batch size (default: 128)
--num_epochs Number of training epochs (default: 50)
--num_sampled Sampled softmax length to embedding (default: 256)
--hidden_size The hidden layer size (default: 128)
--num_conv_layers Number of stacked graph convolution layers (default: 2)
--dropout Dropout rate (default: 0.5)
--no_soft_placement Disallow device soft device placement (default: False)
--log_device_placement Log placement of ops on devices (default: False)
--load_epoch Load previous state if set (default: 0)
--test_only Print test result and exit (default: False)
$ python train_u2gnn_unsup.py -h
usage: train_u2gnn_unsup.py [-h] [--model_name MODEL_NAME]
[--learning_rate LEARNING_RATE]
[--batch_size BATCH_SIZE]
[--num_epochs NUM_EPOCHS]
[--num_sampled NUM_SAMPLED]
[--hidden_size HIDDEN_SIZE]
[--num_hidden_layers NUM_HIDDEN_LAYERS]
[--num_timesteps NUM_TIMESTEPS]
[--num_neighbors NUM_NEIGHBORS]
[--dropout DROPOUT]
[--load_epoch LOAD_EPOCH]
[--test_only]
optional arguments:
-h, --help show this help message and exit
--model_name Output directory name (default: KAGGLE)
--learning_rate Learning rate (default: 0.0001)
--batch_size Batch size (default: 16)
--num_epochs Number of training epochs (default: 50)
--num_sampled Sampled softmax length to embedding (default: 256)
--hidden_size The hidden size for the feedforward layer (default: 128)
--num_hidden_layers Number of hidden layers in the encoder (default: 1)
--num_timesteps Timestep T ~ Number of self-attention layers within each U2GNN layer (default: 1)
--num_neighbors Number of neighbors for the input of the encoder (default: 16)
--dropout Dropout rate (default: 0.5)
--load_epoch Load previous state if set (default: 0)
--test_only Print test result and exit (default: False)
$ python train_u2gnn_sup.py -h
usage: train_u2gnn_sup.py [-h] [--model_name MODEL_NAME]
[--learning_rate LEARNING_RATE]
[--batch_size BATCH_SIZE]
[--num_epochs NUM_EPOCHS]
[--hidden_size HIDDEN_SIZE]
[--num_hidden_layers NUM_HIDDEN_LAYERS]
[--num_timesteps NUM_TIMESTEPS]
[--num_neighbors NUM_NEIGHBORS]
[--dropout DROPOUT]
[--load_epoch LOAD_EPOCH]
[--test_only]
optional arguments:
-h, --help show this help message and exit
--model_name Output directory name (default: KAGGLE)
--learning_rate Learning rate (default: 0.0001)
--batch_size Batch size (default: 16)
--num_epochs Number of training epochs (default: 50)
--hidden_size The hidden size for the feedforward layer (default: 128)
--num_hidden_layers Number of hidden layers in the encoder (default: 1)
--num_timesteps Timestep T ~ Number of self-attention layers within each U2GNN layer (default: 1)
--num_neighbors Number of neighbors for the input of the encoder (default: 16)
--dropout DROPOUT Dropout rate (default: 0.5)
--load_epoch Load previous state if set (default: 0)
--test_only Print test result and exit (default: False)
Assume that the dataset is COLLAB.
python test_accuracy.py -h
usage: test_accuracy.py [-h] filepath
positional arguments:
filepath Sample CSV to test
optional arguments:
-h, --help show this help message and exit